Is there a better/closed form for the Cauchyproduct $$A^k + A^{k-1}(A+I)/2 + A^{k-2}((A+I)/2)^2 + ... +( (A+I)/2)^k$$ ?Here $I$ is the identity and $A$ the upper subdiagonal filled with the unit ($a_{r,c}= \delta_{r+1,c}$). Clearly $A$ and $I$ commute so we can do some reformulations, but unfortunately $A$ is not invertible.
$$A=\small {\begin{bmatrix} 0&1&0&.&.&... \\ .&0&1&0&.&... \\ .&.&0&1&0&... \\ ...\end{bmatrix} }$$