In the answer chosen by the OP in this question I had trouble understanding the steps taken to get the equivalences/reduce the zeta function into another one. Can somebody show me the steps to go from one step to the next in this:
$$\begin{align} \zeta(z)&=\frac 1{1^z}+\frac 1{2^z}+\frac 1{3^z}+\frac 1{4^z}+\frac 1{5^z}+\cdots\\ &=\frac 1{1^z}-\frac 1{2^z}+\frac 1{3^z}-\frac 1{4^z}+\frac 1{5^z}+\cdots+\frac 2{2^z}+\frac 2{4^z}+\cdots\\ &=\sum_{n=1}^\infty \frac {(-1)^{n-1}}{n^z}+\frac 2{2^z}\left(1+\frac 1{2^z}+\frac 1{3^z}\cdots\right)\\ \zeta(z)&=\sum_{n=1}^\infty \frac {(-1)^{n-1}}{n^z}+2^{1-z}\zeta(z)\\ \end{align}$$
By step, I mean to go from one equals sign to the next.