The question is this.
Let $(s_n)$ be a sequence such that $$\left|s_{n+1}-s_n\right| < 2^{-n}, \forall n \in\mathbb N$$ Prove that $(s_n)$ is a Cauchy sequence and hence convergent.
My proof is below.
Proof. Let $\epsilon > 0 $ and $N = \dfrac{\ln\left(\frac{1}{\epsilon}\right)}{\ln(2)}$. Then, $\forall n > N = \dfrac{\ln(\frac{1}{\epsilon})}{\ln(2)}$ implies $$n\ln(2) > \ln\left(\frac{1}{\epsilon}\right)$$ $$2^n > \frac{1}{\epsilon}$$ $$\epsilon > \frac{1}{2^n} > \left|s_{n+1}-s_n\right|$$Q.E.D.
Is this ok??
As for how to solve it, use the fact that $2^{-n} + 2^{-n-1} + \ldots + 2^{-n-k} = 2^{-n}(2^0 + 2^{-1}+ ... + 2^{-k}) = 2^{-n}\cdot \mathrm{geometric series}$
– xyzzyz Sep 11 '13 at 02:09