It's a follow up of Does three iteration are sufficient to use Newton's method
Come back on the previous question :
$f(x)=x\left(b_0(1+x)+\frac{b_1}{x+1}+\frac{b_2}{1+\frac{1}{x+1}}+\cdots+\frac{b_{n}}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\cdots x}}}}\right)-C=0\tag{I}$
Or:
$x\left(b_{0}\left(x+1\right)+b_{1}\cdot\frac{1}{x+1}+b_{2}\frac{x+1}{x+2}+b_{3}\cdot\frac{x+2}{2x+3}+\cdot\cdot+\frac{b_{n}\left(F_{n-2}x+F_{n-1}\right)}{F_{n-1}x+F_{n}}\right)-C=0$
Where $F_n$ are the Fibonacci's numbers
Now let $b_0\geq 1,C>2$,$b_i\in R$
Using Newton's method on $f(x)$ provided the polynomial (numerator) have only one positive real root over $R^+$
Is the starting value $k>x_{positive-root}$ with the Newton's methods sufficient to ensure the convergence to the positive and unique root ?
Have you a proof or a counterxample ?