I have been stuck on this proof for over an hour and just cannot wrap my head around what I am doing wrong.
I have to proof the following: $$P_n:\sum_{i=1}^n\frac i{3^i}= \frac34-\frac {2n+3}{4\cdot3^n} \quad (n \in \mathbb{N})$$
My proof: $$P_0:\; \frac {0}{3^{0}} = 0, \quad \frac {3}{4}-\frac {2\cdot0+3}{4\cdot3^0} = \frac34-\frac34=0.$$
$$P_{n+1}:\; \sum_{i=1}^{n+1}\frac i{3^i} = \frac34-\frac {2(n+1)+3}{4\cdot3^{n+1}}$$
$$\begin{align}P_n \rightarrow P_{n+1}:\;\sum_{i=1}^{n+1}\frac i{3^i}&= \sum_{i=1}^n (\frac i{3^i})+\frac{n+1}{3^{n+1}}\\&=\frac34-\frac {2n+3}{4\cdot3^n}+\frac{n+1}{3^{n+1}}\\&=\frac34-\frac {2n+3}{4\cdot3^n}+\frac{n+1}{3\cdot3^n}\\&=\frac34-\frac {3(2n+3)+4(n+1)}{4\cdot3\cdot3^n}\\&=\frac34-\frac {6n+3+4n+4}{4\cdot3^{n+1}}\\&=\frac34-\frac {10n+7}{4\cdot3^{n+1}}.\end{align}$$