Let $f,g:X\to \mathbb{R}$ be integrable function on measure space $(X,\mathcal{F}, \mu)$. Define $v=(f,g)$ and $\int vd\mu=(\int fd\mu, \int gd\mu)$. Define $2$-norm $\|(f,g)\|_2=\sqrt{f^2+g^2}$. Show that $$ \|\int vd\mu\|_2\le\int\|v\|_2d\mu $$
My idea is to define a orthogonal transformation that $$F(v)=F(f,g):=(\|v\|_2,0)$$
Then $\|v\|_2=\|Fv\|_2$.
Also, $$ \|F(\int v)\|_2=\|\int v\|_2 $$ because $F\int v=(\|\int v\|_2, 0,0)$.
Since $2$-norm is convex by Why is every $p$-norm convex?, apply Jensen's inequality $$ \|F\int v\|_2=\|\int v\|_2\le \int \|v\|_2 $$
My question is, I used Jensen's inequality here, but if I directly apply Jensen's inequality, wouldn't that directly prove it? I feel like I might be engaging in circular reasoning.