0

I am just beginning my study for field theory and I am trying to solve a problem:

Let $p$ be a prime and $\zeta$ be the primitive $p$th root of unity. Then calculate $[\mathbb{Q}(\sqrt[p]{2},\zeta) : \mathbb{Q}]$.

Here is my attempt:

Since we have $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt[p]{2}) \subseteq \mathbb{Q}(\sqrt[p]{2},\zeta)$, we get

$$[\mathbb{Q}(\sqrt[p]{2},\zeta) : \mathbb{Q}] = [\mathbb{Q}(\sqrt[p]{2},\zeta) : \mathbb{Q}(\sqrt[p]{2})] [\mathbb{Q}(\sqrt[p]{2}) : \mathbb{Q}]$$

And this means we only need to calculate $[\mathbb{Q}(\sqrt[p]{2},\zeta) : \mathbb{Q}(\sqrt[p]{2})]$ and $[\mathbb{Q}(\sqrt[p]{2}) : \mathbb{Q}]$.

For $[\mathbb{Q}(\sqrt[p]{2}) : \mathbb{Q}]$, the minimal polynomial of $\sqrt[p]{2}$ over $\mathbb{Q}$ is $f(x) = x^p - 2$, and this means

$$[\mathbb{Q}(\sqrt[p]{2}) : \mathbb{Q}] = \deg(x^p - 2) = p$$

For $[\mathbb{Q}(\sqrt[p]{2},\zeta) : \mathbb{Q}(\sqrt[p]{2})]$, a basis of $\mathbb{Q}(\sqrt[p]{2},\zeta)$ over $\mathbb{Q}(\sqrt[p]{2})$ is $\{1, \zeta, \zeta^2,...,\zeta^{p-1}\}$, so we have

$$[\mathbb{Q}(\sqrt[p]{2},\zeta) : \mathbb{Q}(\sqrt[p]{2})] = \mid\{1, \zeta, \zeta^2,...,\zeta^{p-1}\} \mid = p$$

Therefore we get

$$[\mathbb{Q}(\sqrt[p]{2},\zeta) : \mathbb{Q}] = [\mathbb{Q}(\sqrt[p]{2},\zeta) : \mathbb{Q}(\sqrt[p]{2})] [\mathbb{Q}(\sqrt[p]{2}) : \mathbb{Q}] = p^2$$

$\textbf{Question:}$ Can someone help me check whether my attempt is right or not? I am just beginning my study and I am really not confident in this. If someone is willing to help, your help will be greatly appreciated! Thanks!

ZYX
  • 1,154

0 Answers0