After having seen a lengthy and painful calculation showing $\operatorname{Gal}(\mathbb Q[e^\frac{2\pi i}3, \sqrt[\leftroot{-2}\uproot{2}3]{2}]/\mathbb Q)\cong S_3$, I'm wondering whether there's a slick proof $\operatorname{Gal}(\mathbb Q[e^\frac{2\pi i}p, \sqrt[\leftroot{-2}\uproot{2}p]{2}]/\mathbb Q)\cong S_p$ for odd prime $p$, because these calculations are getting intractable fast.
What are some slick proofs of this fact (assuming it is indeed correct).
Correction: What IS $\operatorname{Gal}(\mathbb Q[e^\frac{2\pi i}p, \sqrt[\leftroot{-2}\uproot{2}p]{2}]/\mathbb Q)$ for prime $p$?