For $-1 < s < 1$, define
\begin{align*}
I(s) &= \int_0^\infty \frac{x^s}{x^2 + 2x + 2} \ \mathrm{d}x
\end{align*}
Then, we see the integral required is $I'''(0)$. Hence, it suffices to evaluate the above integral.
Let $f(z) = \frac{z^s}{z^2 + 2z + 2}$ for $z \in \mathbb{C}$. Consider an anticlockwise keyhole contour $\Gamma$ of outer radius $R$ and inner radius $\varepsilon$ about the positive real axis. Let $\gamma_R$ denote the outer arc, $\gamma_\varepsilon$ denote the inner arc, and $\gamma_{\pm}$ denote the segments going away from and towards the origin respectively.
Note that this contour contains two singularities of $f$, namely $z = \sqrt{2}\exp\left (\frac{3\pi i}{4}\right ), \sqrt{2}\exp\left (\frac{5\pi i}{4}\right )$, both of order $1$. Hence, by Residue Theorem, we have
\begin{align*}
\oint_\Gamma \frac{z^s}{z^2 + 2z + 2} \ \mathrm{d}z &= 2\pi i \left (\operatorname{Res}\left (f(z), z = \sqrt{2}\exp\left (\frac{3\pi i}{4}\right )\right ) + \operatorname{Res}\left (f(z), z = \sqrt{2}\exp\left (\frac{5\pi i}{4}\right )\right ) \right )\\
&= 2^{\frac{s}{2}} \pi \left (\exp\left (\frac{3s\pi i}{4}\right ) - \exp\left (\frac{5s\pi i}{4}\right ) \right )
\end{align*}
On the other hand, by bounding (using Estimation Lemma) we see
\begin{align*}
\left |\int_{\gamma_R} \frac{z^s}{z^2 + 2z + 2} \ \mathrm{d}z \right | &\leq \frac{2\pi R^{1+s}}{R^2 - 2R - 2} \to 0 \text{ as } R \to \infty\\
\left |\int_{\gamma_\varepsilon} \frac{z^s}{z^2 + 2z + 2} \ \mathrm{d}z \right | &\leq \frac{2\pi \varepsilon^{1+s}}{2 - 2\varepsilon - 2\varepsilon^2} \to 0 \text{ as } \varepsilon \to 0\\
\end{align*}
We see
\begin{align*}
\int_{\gamma_-} \frac{z^s}{z^2 + 2z + 2} \ \mathrm{d}z &= \int_R^\varepsilon \frac{x^s \exp(2s\pi i)}{x^2 + 2x + 2} \ \mathrm{d}x\\
&= -\exp(2s\pi i) \int_\varepsilon^R \frac{x^s}{x^2 + 2x + 2} \ \mathrm{d}x
\end{align*}
Taking $\varepsilon \to 0$ and $R \to \infty$, we have
\begin{align*}
\oint_\Gamma \frac{z^s}{z^2 + 2z + 2} \ \mathrm{d}z &= (1 - \exp(2s\pi i))\int_0^\infty \frac{x^s}{x^2 + 2x + 2} \ \mathrm{d}x
\end{align*}
We therefore get
\begin{align*}
\int_0^\infty \frac{x^s}{x^2 + 2x + 2} \ \mathrm{d}x &= \frac{2^{\frac{s}{2}} \pi \left (\exp\left (\frac{3s\pi i}{4}\right ) - \exp\left (\frac{5s\pi i}{4}\right ) \right )}{1 - \exp(2s\pi i)}\\
&= \frac{2^{\frac{s}{2}} \pi (\omega^3 - \omega^5)}{1 - \omega^8} && \text{letting } \omega = \exp\left (\frac{s\pi i}{4}\right )\\
&= \frac{2^{\frac{s}{2}} \pi}{(\omega + \omega^{-1})(\omega^2 + \omega^{-2})}\\
&= \frac{\pi}{4} 2^{\frac{s}{2}} \sec \left (\frac{s\pi}{2} \right ) \sec \left (\frac{s\pi}{4} \right )
\end{align*}
To finish off, we can use the Taylor series of these terms to quickly compute $I'''(0)$:
\begin{align*}
2^{\frac{s}{2}} &= 1 + \frac{\log(2)}{2} s + \frac{\log(2)^2}{8} s^2 + \frac{\log(2)^3}{48} s^3 + O(s^4)\\
\sec \left (\frac{s\pi}{2} \right ) &= 1 + \frac{\pi^2}{8} s^2 + O(s^4)\\
\sec \left (\frac{s\pi}{4} \right ) &= 1 + \frac{\pi^2}{32} s^2 + O(s^4)\\
\implies \text{the $s^3$ coefficient} &= \frac{\pi \log(2)^3}{192} + \frac{\pi^3 \log(2)}{64} + \frac{\pi^3 \log(2)}{256}\\
&= \frac{\pi \log(2)^3}{192} + \frac{5\pi^3 \log(2)}{256}
\end{align*}
Hence, we get
\begin{align*}
\boxed{\int_0^\infty \frac{\log(x)^3}{x^2 + 2x + 2} \ \mathrm{d}x = \frac{\pi \log(2)^3}{32} + \frac{15\pi^3 \log(2)}{128}}
\end{align*}
which agrees numerically with your answer.