We introduce the notations:
$$
\begin{aligned}
a &=\sqrt{y^2 +x}\ge 0\ ,\text{ so}&a^2 &=y^2 + x\ ,\\
b &=\sqrt{x^2 +y}\ge 0\ ,\text{ so}&b^2 &=x^2 + y\ ,\\
&\qquad\text{ and there is the relation}\\
y&=(a+x)(b-y)\ .
\end{aligned}
$$
The idea is to eliminate $x,y$, and obtain a single equation connecting the variables $a,b$.
We extract $x=a^2 -y^2$ from the first equation, insert in the other two, and obtain:
$$
\left\{
\begin{aligned}
0 &=(y^2 - a^2)^2-b^2+y\ ,\\
0 &=(y^2-a^2-a)(y-b)-y\ ,
\end{aligned}
\right.
\qquad\text{i.e}\qquad
\left\{
\begin{aligned}
0 &= y^4 -2a^2 y^2 + a^4-b^2+y\ ,\\
0 &= y^3 -by^2 -(a^2+a+1)y +(a^2+a)b\ .
\end{aligned}
\right.
$$
We need to eliminate $y$ between the two polynomials. We can successively apply the euclidean algorithm, so divide first the $Y$-polynomial $(Y^2 - a^2)^2+Y-b^2$ by the quotient $(Y^2-a^2-a)(Y-b)-Y$, and obtain a rest of degree $<3$, then repeat the process with the last two polynomials (quotient and rest). This is the same as computing a resultant of two polynomials.
In our case, the determinant $\Delta$ (which is the resultant) seems to be slightly to big for a display, but many entries vanish.
We know that this resultant $\Delta$ is zero because the polynomials have a common root $y$!
Before we start the computation, there is one observation that we must make.
The resultant is a polynomial in $a,b$. If in this resultant we set $b=a$, we become zero. (Why? Because the two polynomials we start with, when setting $b=a$ in them, become $(y^2-a^2)^2-a^2+y=((y^2-a^2)+y)((y^2-a^2)-y+1)$, and
$(y^2-a^2-a)(y-a)-y=(y^2-a^2)(y-a)-ay+a^2-y = ((y^2-a^2)+y)((y-a)-1)$. And the two polynomials share now a common factor, $y^2-a^2+y$, as expected. So we should be in position to factor sooner or later $(a-b)$. This is deceptively simple for a computer, but i am trying to also give the human way.
Pivots are boxed.
$$
\small
\begin{aligned}
\Delta &=
\begin{vmatrix}
\boxed 1 & 0 & -2a^2 & 1 & a^4-b^2\\
& \boxed 1 & 0 & -2a^2 & 1 & a^4-b^2\\
& & 1 & 0 & -2a^2 & 1 & a^4-b^2\\
1 & -b & -(a^2 + a + 1) & (a+1)ab\\
& 1 & -b & -(a^2 + a + 1) & (a+1)ab\\
& & 1 & -b & -(a^2 + a + 1) & (a+1)ab\\
& & & 1 & -b & -(a^2 + a + 1) & (a+1)ab
\end{vmatrix}
\\[3mm]
&=
\begin{vmatrix}
1 & 0 & -2 a^{2} & 1 & a^{4} - b^{2} & 0 & 0 \\
0 & 1 & 0 & -2 a^{2} & 1 & a^{4} - b^{2} & 0 \\
0 & 0 & 1 & 0 & -2 a^{2} & 1 & a^{4} - b^{2} \\
0 & 0 & a^{2} - a - 1 & -a^{2} b + a b - 1 & -a^{4} + b^{2} + b & a^{4} b - b^{3} & 0 \\
0 & 0 & -b & a^{2} - a - 1 & a^{2} b + a b - 1 & -a^{4} + b^{2} & 0 \\
0 & 0 & 1 & -b & -a^{2} - a - 1 & a^{2} b + a b & 0 \\
0 & 0 & 0 & 1 & -b & -a^{2} - a - 1 & a^{2} b + a b
\end{vmatrix}
\\[3mm]
&=
\begin{vmatrix}
{}\boxed
1 & 0 & -2 a^{2} & 1 & a^{4} - b^{2} \\
a^{2} - a - 1 & -a^{2} b + a b - 1 & -a^{4} + b^{2} + b & a^{4} b - b^{3} & 0 \\
-b & a^{2} - a - 1 & a^{2} b + a b - 1 & -a^{4} + b^{2} & 0 \\
1 & -b & -a^{2} - a - 1 & a^{2} b + a b & 0 \\
0 & 1 & -b & -a^{2} - a - 1 & a^{2} b + a b
\end{vmatrix}
\\[3mm]
&=
\begin{vmatrix}
{}\boxed
1 & 0 & -2 a^{2} & 1 & a^{4} - b^{2} \\
a^{2} - a - 1 & -a^{2} b + a b - 1 & -a^{4} + b^{2} + b & a^{4} b - b^{3} & 0 \\
0 & a^{2} - a - 1 & -a^{2} b + a b - 1 & -a^{4} + b^{2} + b & a^{4} b - b^{3} \\
0 & -b & a^{2} - a - 1 & a^{2} b + a b - 1 & -a^{4} + b^{2} \\
0 & 1 & -b & -a^{2} - a - 1 & a^{2} b + a b
\end{vmatrix}
\\[3mm]
&=
\begin{vmatrix}
-a^{2} b + a b - 1 & a^{4} - 2 a^{3} - 2 a^{2} + b^{2} + b & a^{4} b - b^{3} - a^{2} + a + 1 &
-(a^2 - b) \cdot (a^{2} + b) \cdot (a^{2} - a - 1)
\\
a^{2} - a - 1 & -a^{2} b + a b - 1 & -a^{4} + b^{2} + b
& b(a^2-b)(a^2+b) \\
-b & a^{2} - a - 1 & a^{2} b + a b - 1 & \boxed{-(a^2-b)(a^2+b)} \\
1 & -b & -a^{2} - a - 1 & ab(a+1)
\end{vmatrix}
\\[3mm]
&=
\begin{vmatrix}
-b - 1 & -a^{2} + b^{2} - 2 a + b - 1 & 2 a^{2} b - b^{3} + a b & 0 \\
a^{2} - b^{2} - a - 1 & -b - 1 & -a^{4} + a^{2} b^{2} + a b^{2} + b^{2} & 0 \\
-b & a^{2} - a - 1 & a^{2} b + a b - 1 & -(a^2-b)(a^2+b) \\
\boxed
1 & -b & -a^{2} - a - 1 & ab(a+1)
\end{vmatrix}
\\[3mm]
&\qquad\text{ (From the second row subtract the first one)}
\\[3mm]
&=
\begin{vmatrix}
-b - 1 & -a^{2} + b^{2} - 2 a + b - 1 & 2 a^{2} b - b^{3} + a b & 0 \\
(a-b)(a+b+1) & (a-b)(a+b+2) & -(a-b)(a^3 + a^2b + 2ab + b^2 + b) & 0 \\
-b & a^{2} - a - 1 & a^{2} b + a b - 1 & -(a^2-b)(a^2+b) \\
1 & -b & -a^{2} - a - 1 & ab(a+1)
\end{vmatrix}
\\[3mm]
&=
(a-b)
\begin{vmatrix}
-b - 1 & -a^{2} + b^{2} - 2 a + b - 1 & 2 a^{2} b - b^{3} + a b & 0 \\
a + b - 1 & a + b + 2 & -a^{3} - a^{2} b - 2 a b - b^{2} - b & 0 \\
-b & a^{2} - a - 1 & a^{2} b + a b - 1 & -(a^2-b)(a^2+b) \\
\boxed
1 & -b & -a^{2} - a - 1 & ab(a+1)
\end{vmatrix}
\\[3mm]
&=
(a-b)
\begin{vmatrix}
-b - 1 & -(a+1)^2 & a^{2} b - b^{3} - a^{2} - a - b - 1 & 0 \\
a + b - 1 & a b + b^{2} + a + 2 & -a b - b^{2} - 1 & 0 \\
-b & a^{2} - b^{2} - a - 1 & -b - 1 & -a^4 + b^2 \\
1 & 0 & 0 & ab(a+1)
\end{vmatrix}
\\[3mm]
&\qquad\text{ Multiply last row by $(a-1)$, add it to previous one}
\\[3mm]
&=
(a-b)
\begin{vmatrix}
-b - 1 & -(a+1)^2 & a^{2} b - b^{3} - a^{2} - a - b - 1 & 0 \\
a + b - 1 & a b + b^{2} + a + 2 & -a b - b^{2} - 1 & 0 \\
a - b - 1 & a^{2} - b^{2} - a - 1 & -b - 1 & -(a-b)(a^3+b) \\
\color{red}{1} & 0 & 0 & \color{red}{ab(a+1)}
\end{vmatrix}
\\[3mm]
&=\color{red}{1}\cdot(a-b)^2(a^3+b)
\begin{vmatrix}
-(a+1)^2 & a^{2} b - b^{3} - a^{2} - a - b - 1 \\
a b + b^{2} + a + 2 & -a b - b^{2} - 1
\end{vmatrix}
\\
&\qquad
+\color{red}{ab(a+1)}(a-b)
\begin{vmatrix}
-b - 1 & -(a+1)^2 & a^{2} b - b^{3} - a^{2} - a - b - 1 \\
a + b - 1 & a b + b^{2} + a + 2 & -a b - b^{2} - 1 \\
a - b - 1 & a^{2} - b^{2} - a - 1 & -b - 1
\end{vmatrix}
\\[3mm]
&=\dots
\end{aligned}
$$
It turns out that from the $3\times3$-determinant we can further extract one more factor $(a-b)$. The final result is:
$$
\begin{aligned}
\Delta =(a-b)^2&\Big( \ (a-b)^2(a+b)^4
\\
&\qquad\qquad
+(a + b) (4 a^{4} + 4 a^{3} b + 5 a^{3} + a^{2} b + 3 a b^{2} + 3 b^{3})
\\
&\qquad\qquad\qquad\qquad
+(a + b) (3 a^2 + a b + 2 b^2)
\\
&\qquad\qquad\qquad\qquad\qquad\qquad +5ab + 2b^2 + 3b\Big)\ .
\end{aligned}
$$
Recall that $a,b\ge 0$.
This quantity $\Delta$ is $\ge 0$, and can become zero only if $a=b$.
From here we obtain
$$
\begin{aligned}
y &=
(a+x)(b-y)
=(b+x)(a-y)
\\
&=
\frac{b^2-x^2}{b-x}\cdot
\frac{a^2-y^2}{a+y}
=\frac{yx}{(b-x)(a+y)}
\\
&=\frac {yx}y=x\ .
\end{aligned}
$$
$\square$