Good evening,
I was interested in the third integral from the finals of the MIT Integration Bee 2024 :
$$I = \int_{-\infty}^{\infty} \frac{1}{x^4+x^3+x^2+x+1} \hspace{0.1cm} \mathrm{d}x$$
One way to solve this is to identify that the denominator is the fifth cyclotomic polynomial, so we can write :
$$I = \displaystyle\int_{-\infty}^{\infty} \frac{1-x}{(1-x)(x^4+x^3+x^2+x+1)} \hspace{0.1cm} \mathrm{d}x = \displaystyle\int_{-\infty}^{\infty} \frac{1-x}{1-x^5} \hspace{0.1cm} \mathrm{d}x$$
Then, by Chasles :
$$I = \displaystyle\int_{-\infty}^{0} \frac{1-x}{1-x^5} \hspace{0.1cm} \mathrm{d}x + \displaystyle\int_{0}^{\infty} \frac{1-x}{1-x^5} \hspace{0.1cm} \mathrm{d}x$$
Let $x\to -x$ in the first integral, we obtain :
$$I = \displaystyle\int_{0}^{\infty} \frac{1+x}{1+x^5} \hspace{0.1cm} \mathrm{d}x + \displaystyle\int_{0}^{\infty} \frac{1-x}{1-x^5} \hspace{0.1cm} \mathrm{d}x$$
And we use these two identities :
$$ \displaystyle\int_{0}^{\infty} \frac{x^{s-1}}{1+x^k} \hspace{0.1cm} \mathrm{d}x = \frac{\pi}{k} \csc\left( \frac{\pi s}{k} \right)$$
$$ \mathrm{PV} \displaystyle\int_{0}^{\infty} \frac{x^{s-1}}{1-x^k} \hspace{0.1cm} \mathrm{d}x = \frac{\pi}{k} \cot\left( \frac{\pi s}{k} \right)$$
As a consequence :
$$ I = \frac{\pi}{5} \left( \csc\left( \frac{\pi}{5} \right) + \csc\left( \frac{2\pi}{5} \right) + \cot\left( \frac{\pi}{5} \right) - \cot\left( \frac{2\pi}{5} \right)\right) = \frac{\pi}{5} \sqrt{10 + 2 \sqrt{5}}\approx 2.39026573179$$
I have several questions :
1) I have never seen these two identities, apparently it comes from beta/gamma functions, does anyone have a reference with a proof ?
2) Is it possible to take another path ? With a contour integral for example ? I'm curious.
https://fr.wikipedia.org/wiki/Relation_de_Chasles
– LexLarn Feb 21 '24 at 22:55