how to integrate $$\int_{0}^{1} \left(\frac{\arctan(x) - x}{x^2}\right)^2 \,dx$$
Attempt $$=\int_{0}^{1} \left(\frac{\arctan(x) - x}{x^2}\right)^2 \,dx = \int_{0}^{1} \frac{1}{x^4} \cdot (\arctan(x) - x)^2 \,dx$$
Integrating by parts
$$I = -\frac{1}{3} \left(\frac{\pi}{4} - 1\right)^2 + \frac{2}{3} \int_{0}^{1} \frac{x - \arctan(x)}{x(x^2 + 1)} \,dx$$
$$= -\frac{1}{3} \left(\frac{\pi}{4} - 1\right)^2 + \frac{2}{3} \int_{0}^{1} \frac{1}{x^2 + 1} \,dx - \frac{2}{3} \int_{0}^{1} \frac{\arctan(x)}{x(x^2 + 1)} \,dx$$