I want to prove that the set of all finite sequences of integers is countably infinite. I would also like to "check" the validity of my proof.
First, note that $\mathbb{Z}$ is countable as established in class. Then, note that all finite integer sequences of length $n$ will be contained in the Cartesian product $\mathbb{Z}^n$. Further, we know that $|\mathbb{Z}^n| = \aleph_0$ because \begin{align*} \mathbb{Z}^n &= \underbrace{\mathbb{Z} \times \mathbb{Z} \times \cdots \times \mathbb{Z}}_{n \text{ times}} \\ \implies |\mathbb{Z}^n| &= |\mathbb{Z} \times \mathbb{Z} \times \cdots \times \mathbb{Z}| \\ &= |\mathbb{Z}| \cdot |\mathbb{Z}| \cdots |\mathbb{Z}| \\ &= \aleph_0 \cdot \aleph_0 \cdots \aleph_0 = \aleph_0. \end{align*} Then, the set of all possible finite sequences of integers is $\bigcup_{i = 1}^\infty \mathbb{Z}^n$. Then, consider \begin{align*} \left|\bigcup_{i = 1}^\infty \mathbb{Z}^n\right| &= |\mathbb{Z} \cup \mathbb{Z}^2 \cup \mathbb{Z}^3 \cup \cdots| \\ &= |\mathbb{Z}| + |\mathbb{Z}^2| + |\mathbb{Z}^3| + \cdots \\ &= \aleph_0 + \aleph_0 + \aleph_0 + \cdots = \aleph_0. \end{align*} Therefore, this set is countably infinite.
Is this enough? I feel like my proof is a bit hand-wavy. Also, if I wanted to do this via constructing a bijection, how could I proceed?