We can factor the integrand into something nicer and less intimidating.
The integrand is equal to
$$I = \int_0^1 \int_0^{\infty} \frac{2 \sqrt{115} \cdot(27t^2+11)}{(27t^2+11)^2+1035u^2\cdot (t^2+1)^2} dt du$$
Swapping the order of integration, we get
$$ I = \int_{t=0}^{\infty} \int_{u=0}^1 \frac{2 \sqrt{115} \cdot(27t^2+11)}{(27t^2+11)^2+u^2\cdot (3\sqrt{115})^2\cdot (t^2+1)^2} du dt$$
$$ = \int_{t=0}^{\infty} \frac{2\sqrt{115}(27t^2+11)}{1035(t^2+1)^2} \cdot \int_{u=0}^1 \frac{1}{\frac{(27t^2+11)^2}{\left[3 \sqrt{115} \cdot (t^2+1)\right]^2} + u^2} du dt$$
$$ = \int_{t=0}^{\infty} \frac{2\sqrt{115}(27t^2+11)}{1035(t^2+1)^2} \cdot \frac{3\sqrt{115}(t^2+1)}{(27t^2+11)} \cdot \arctan \left(\frac{3\sqrt{115}(t^2+1)}{(27t^2+11)} \right) dt$$
$$ = \frac{2}{3} \cdot \int_0^{\infty} \frac{1}{(t^2+1)} \cdot \arctan \left(\frac{3\sqrt{115}(t^2+1)}{(27t^2+11)} \right) dt$$
Now let us substitute $t = \tan \theta$. The integral the becomes:
$$I = \frac{2}{3} \cdot \int_0^{\frac{\pi}{2}} \arctan \left( \frac{3\sqrt{115} \sec^2\theta}{27\sec^2\theta - 16}\right) d\theta$$
$$ I = \frac{2}{3} \cdot \int_0^{\frac{\pi}{2}} \arctan \left(\frac{3\sqrt{115}}{11+16 \sin^2\theta} \right) d\theta$$
$$ = \frac{2}{3} \cdot \int_0^{\frac{\pi}{2}} \arctan \left(\frac{3\sqrt{115}}{19 - 8 \cos 2\theta} \right) d\theta$$
Substitute $2\theta = x$ and we get:
$$ I = \frac{1}{3} \cdot \int_0^{{\pi}} \arctan \left(\frac{3\sqrt{115}}{19 - 8 \cos x} \right) dx$$
$$ = \frac{1}{3} \cdot \int_0^{\pi} \frac{\pi}{2} dx - \frac{1}{3} \cdot \int_0^{\pi} \arctan \left(\frac{19 - 8 \cos x}{3\sqrt{115}} \right) dx$$
$$I = \frac{\pi^2}{6} - \frac{1}{3} \cdot \int_0^{\pi} \arctan \left(\frac{19 - 8 \cos x}{3\sqrt{115}} \right) dx$$
Note that the second integral is nothing but
$$I_1 = \int_0^{\pi} \arctan \left(\frac{19 - 8 \cos x}{3\sqrt{115}} \right) dx = \frac{\pi^2}{6}$$
Because, observe that
$$4\cdot \left(\frac{19}{3\sqrt{115}}\right)^2 - \left(\frac{8}{3\sqrt{115}}\right)^2 = \frac{4}{3}$$
And for $0<a<1$, $b>0$ and $4a^2-b^2 = \frac{4}{3}$, we have
$$\int_0^{\pi} \arctan \left( a + b\cos x \right) dx = \int_0^{\pi} \arctan \left( a - b\cos x \right) dx = \frac{\pi^2}{6}$$
The proof of which is given by Sangchul Lee, linked here..
Finally, our main integral becomes:
$$I = \frac{\pi^2}{6} - \frac{1}{3} \cdot \frac{\pi^2}{6} = \frac{\pi^2}{6} - \frac{\pi^2}{18} = \frac{\pi^2}{9}$$
Which is the desired result and matches with WolframAlpha.