Notations
- $\displaystyle F(z):=\frac{\sqrt{\pi}}{2}e^{-z^2}\text{erfi}(z)\text{ is the Dawson integral}$
- $\gamma$ is the Eulero-Mascheroni constant
- ${}_pF_q(a_1,...,a_p; b_1,...,b_q|z)$ is the hypergemetric function
- P.V. is the principal value
You can use again the Feymann trick, but now it's more complex:
$$\begin{align}\int_{-\infty}^{\infty}\frac{\ln\left(\left|ax+b\right|\right)}{\sqrt{2\pi}}e^{-\frac{x^{2}}{2}}dx=&\frac{\ln\left(\left|a\right|\right)}{\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{-\frac{x^{2}}{2}}dx+\int_{-\infty}^{\infty}\frac{\ln\left(\left|x+\frac{b}{a}\right|\right)}{\sqrt{2\pi}}e^{-\frac{x^{2}}{2}}dx\\
=&\ln\left(\left|a\right|\right)+\int_{-\infty}^{\infty}\frac{\ln\left(\left|x+\frac{b}{a}\right|\right)}{\sqrt{2\pi}}e^{-\frac{x^{2}}{2}}dx\end{align}$$
Let
$$G\left(s\right):=\int_{-\infty}^{\infty}\frac{\ln\left(\left|x+s\right|\right)}{\sqrt{2\pi}}e^{-\frac{x^{2}}{2}}dx$$
$$g\left(s\right):=G'(s)=\frac{1}{\sqrt{2\pi}}\text{P.V.}\int_{-\infty}^{\infty}\frac{e^{-\frac{x^{2}}{2}}}{x+s}dx=\sqrt{2}F\left(\frac{s}{\sqrt{2}}\right)$$
So
$$G(s)=\frac{s^2}{2}{}_2F_2\left(\left.{1,1\atop\frac{3}{2},2}\right|-\frac{s^2}{2}\right)+c_0$$
$c_0$ is a constant and is determined by imposing the passage for $0$:
$$c_0=\int_{-\infty}^{\infty}\frac{\ln\left(\left|x\right|\right)}{\sqrt{2\pi}}e^{-\frac{x^{2}}{2}}dx=-\frac{\ln\left(2\right)+\gamma}{2}$$
So
$$\color{blue}{\int_{-\infty}^{\infty}\frac{\ln\left(\left|ax+b\right|\right)}{\sqrt{2\pi}}e^{-\frac{x^{2}}{2}}dx=\ln(|a|)+\frac{b^2}{2a^2}\cdot{}_2F_2\left(\left.{1,1\atop\frac{3}{2},2}\right|-\frac{b^2}{2a^2}\right)-\frac{\ln\left(2\right)+\gamma}{2}}$$
P.S.: To check the correctness of my formula I leave you two Wolfram links: in the first the one with the integral, in the second the one with the solution (you can change the command and put random values, in this case I put $a=6.2$ and $b=- 2.3$)
Update
In answer to the question if the hypergeometric function can be simplied the answer is no. At most I can give you a numerical method to calculate it yourself:
$${}_2F_2\left(\left.{1,1\atop\frac{3}{2},2}\right|-\frac{z^2}{2}\right)=2\sum_{n=0}^{\infty}\left(-1\right)^{n}\frac{2^{n}n!}{\left(2n+2\right)!}z^{2n}$$
You may also see the background discussed here for another application: https://math.stackexchange.com/q/4843188/1231520. Note that $$\mathbb E \left( \log(|1-\alpha X^2|) \right )=\mathbb E \bigg [ \log(|1-\sqrt{\alpha}X|)+\log(|1+\sqrt{\alpha}X|) \bigg ]. $$
– Amir Jan 23 '24 at 22:42