So, first, there is an error in your formula, it should be
$$
[f]_s^2 = \|f\|_{H^m}^2 + \iint \frac{|\nabla^mf(x)-\nabla^mf(y)|^2}{|x-y|^{d+2\sigma}}\,\mathrm d x \,\mathrm d y.
$$
Define the Fourier transform
$$
\widehat{u}(y) = \mathcal F(u)(y) = \int_{\mathbb R} e^{-2iĻ \,x\cdot y} \,u(x)\,\mathrm d x.
$$
Recall that for $\sigma\in(0,1)$, the fractional Laplacian verifies $\mathcal{F}((-\Delta)^{\sigma/2} u) = |2\pi y|^\sigma \,\widehat{u}(y)$ and also
$$
(-\Delta)^{\sigma/2} u(x) = c_{d,2\sigma} \int\frac{u(x)-u(y)}{|x-y|^{d+\sigma}} \,\mathrm d y
$$
which is just that fact that the Fourier transform of a product is the convolution of the Fourier transforms (see e.g. the last part of the answer here). From the integral formula and by symmetry in $x$ and $y$ it follows that
$$
\int u\,(-\Delta)^{\sigma} u = \frac{c_{d,s}}{2} \iint \frac{|u(x)-u(y)|^2}{|x-y|^{d+2\sigma}}\,\mathrm d x \,\mathrm d y =: |u|_{\dot{H}^\sigma}^2.
$$
On the other hand, by Plancherel formula
$$
\int u\,(-\Delta)^{\sigma} u = \int |2\pi y|^{2\sigma}\, |\widehat{u}(y)|^2\,\mathrm d y.
$$
Therefore, taking $u = \nabla^mf$,
$$
|\nabla^mf|_{\dot{H}^\sigma}^2 = (2\pi)^{2s} \int |y|^{2\sigma}\, |y^{\otimes m}\widehat{u}(y)|^2\,\mathrm d y
\\
= (2\pi)^{2s} \int |y|^{2s}\, |\widehat{u}(y)|^2\,\mathrm d y.
$$
On the other hand, by Plancherel again $\|f\|_{H^m}^2 = \|f\|_{L^2}^2 + \|\nabla^m f\|_{L^2}^2 = \int (1+|2\pi y|^{2m})\, |\widehat{f}|^2\,\mathrm d y$, hence finally
$$
[f]_s^2 = \int (1+|2\pi y|^{2m}+\tfrac{2}{c_{d,2\sigma}}|2\pi y|^{2s})\, |\widehat{f}(y)|^2\,\mathrm d y.
$$
The equivalence between your two norms now just follow from the fact that the function
$$
y \mapsto \frac{1+|2\pi y|^{2m}+\tfrac{2}{c_{d,2\sigma}}|2\pi y|^{2s}}{(1+|2\pi y|^2)^s}
$$
is bounded above and below by positive constants.