0

Suppose that $\theta(t,x)$ is even about $x$ and is smooth. $0\le \gamma<1/2$, $0<\delta<1-2\gamma$. $\Lambda=(-\partial_{xx})^{1/2}$

My Question: How to prove that $$ \int_0^{\infty} \frac{(\Lambda^{\gamma}\theta)(t,x)-(\Lambda^{\gamma}\theta)(t,0)}{x^{1+\delta}}dx=\int_0^{\infty}\frac{\theta(t,x)-\theta(t,0)}{x^{1+\delta+\gamma}}dx $$ My efforts: Since $\theta$ is even, $\Lambda^{\gamma}\theta$ is even. Using parseval's theorem, we can obtain $$ \int_0^{\infty} \frac{(\Lambda^{\gamma}\theta)(t,x)-(\Lambda^{\gamma}\theta)(t,0)}{x^{1+\delta}}dx=\frac{1}{2}\int_{-\infty}^{\infty}\frac{(\Lambda^{\gamma}\theta)(t,x)-(\Lambda^{\gamma}\theta)(t,0)}{|x|^{1+\delta}}dx=\frac{1}{2}\int_{-\infty}^{\infty}( \theta(t,x)-\theta(t,0))\Lambda^{\gamma}(|x|^{-(1+\delta)})dx $$ However, $\Lambda^{\gamma}(|x|^{-(1+\delta)})$ have nonsense.

This question is from the last proof of this paper. Thanks for any help! Blow-up of solutions for a 1D transport equation with nonlocal velocity and supercritical dissipation

LL 3.14
  • 12,457
Mr.xue
  • 681

1 Answers1

2

Define the Fourier transform $$ \widehat{u}(y) = \mathcal F(u)(y) = \int_{\mathbb R} e^{-2iπ \,x\cdot y} \,u(x)\,\mathrm d x. $$ One can then define the fractional Laplacian of order $s > -1$ by $$ \Lambda^{s} u(x) = \mathcal F^{-1}(|2\pi y|^{s}\,\widehat{u}(y)). $$ (so that in particular $\Lambda^{2} = -\Delta$, $\Lambda^{0} = \mathrm{Id}_{\mathbb R}$ and $\Lambda^{1} = \Lambda$). With this definition it is easy to see that (if $a>-1$, $b>-1$ and $a+b>-1$) $$ \Lambda^{a+b} u(x) = \mathcal F^{-1}(|2\pi y|^{a+b}\,\widehat{u}(y)) = \mathcal F^{-1}(|2\pi y|^{a}\mathcal F\mathcal F^{-1}(|2\pi y|^{b}\,\widehat{u}(y)) = \Lambda^{a}\Lambda^{b} u(x). $$ However, it is also possible to prove$^{1}$ that for $s\in(0,1)$ $$ \Lambda^{s} u(x) = c_s \int_{\mathbb R} \frac{u(x)-u(y)}{|x-y|^{1+s}}\, \mathrm d y \tag{1}\label{1} $$ for some constant $c_s = (2\pi)^s \frac{|\omega_{-s}|}{\omega_{d+s}} > 0$ where $\omega_a = \frac{2\,\pi^{a/2}}{\Gamma(a/2)}$. Therefore, defining $u(x) = \theta(t,x)$, in your case you get $$ \begin{align*} \int_0^{\infty} \frac{(\Lambda^{\gamma}u)(x)-(\Lambda^{\gamma}u)(0)}{x^{1+\delta}}\,\mathrm dx &= \frac{1}{2}\int_{\mathbb R} \frac{(\Lambda^{\gamma}u)(y)-(\Lambda^{\gamma}u)(0)}{|y|^{1+\delta}}\,\mathrm dy \\ &= -\frac{1}{2\,c_\delta}\,\Lambda^{\delta}(\Lambda^{\gamma}u)(0) \\ &= -\frac{1}{2\,c_\delta}\,\Lambda^{\gamma+\delta}u(0) \\ &= \frac{c_{\delta+\gamma}}{2\,c_\delta}\,\int_{\mathbb R} \frac{u(y)-u(0)}{|y|^{1+\delta}}\,\mathrm dy \\ &= \frac{c_{\delta+\gamma}}{c_\delta}\,\int_{0}^\infty \frac{u(y)-u(0)}{|y|^{1+\delta}}\,\mathrm dy \end{align*} $$ So your equality is almost right, except that there is a constant $\frac{c_{\delta+\gamma}}{c_\delta} = (2\pi)^\gamma \,\frac{\omega_{d+\delta}\,\omega_{-\delta-\gamma}}{\omega_{d+\delta+\gamma}\,\omega_{-\delta}}$ in front of the right-hand side.

$~$


$^1$ A way to understand and prove the integral formula for the fractional Laplacian and the constant in it is as follows. One can prove by a simple scaling argument (see e.g. here) that $$ \mathcal F\!\left(\frac{1}{\omega_c\,|x|^{c}}\right) = \frac{1}{\omega_{1-c}\, |x|^{1-c}} $$ for $c∈ (0,1)$. When $c = -s\in(-1,0)$, then the formula is still quite the same but since $1/|x|^{1+s}$ is not locally integrable, it has to be replaced by the distribution $\mathrm P(1/|x|^{1+s})$ defined by $$ \int_{\mathbb R} \mathrm P\!\left(\frac{1}{|x|^{1+s}}\right)\varphi(x)\,\mathrm d x := \int_{\mathbb R} \frac{\varphi(x)-\varphi(0)}{|x|^{1+s}}\,\mathrm d x. $$ hence you get $$ \mathcal F\!\left(\frac{1}{\omega_{-s}\,|x|^{-s}}\right) = \frac{1}{\omega_{1+s}}\mathrm P\!\left(\frac{1}{|x|^{1+s}}\right) $$ which can be written $$ \mathcal F\!\left(|x|^s\right) = \frac{\omega_{-s}}{\omega_{1+s}}\,\mathrm P\!\left(\frac{1}{|x|^{1+s}}\right) $$ Now, since the Fourier transform of a product is the convolution of the Fourier transforms, the fractional Laplacian is $$ \begin{align*} \Lambda^{s} u(x) &= \mathcal F^{-1}(|2\pi y|^{s}\,\widehat{u}(y)) = (2\pi)^s \, \mathcal F_y(|y|^s) * u \\ &= \frac{(2\pi)^s\,\omega_{-s}}{\omega_{1+s}}\,\mathrm P\!\left(\frac{1}{|y|^{1+s}}\right) * u \\ &= \frac{(2\pi)^s\,\omega_{-s}}{\omega_{1+s}}\,\int_{\mathbb R}\mathrm P\!\left(\frac{1}{|y|^{1+s}}\right) u(x-y)\,\mathrm d y \\ &= \frac{(2\pi)^s\,\omega_{-s}}{\omega_{1+s}}\,\int_{\mathbb R}\frac{u(x-y)-u(x-0)}{|y|^{1+s}} \,\mathrm d y \\ &= \frac{(2\pi)^s\,\omega_{-s}}{\omega_{1+s}}\,\int_{\mathbb R}\frac{u(z)-u(x)}{|x-z|^{1+s}} \,\mathrm d y \end{align*} $$ where the last line just follows from the change of variable $y=x-z$. Since $\omega_{-s} = -|\omega_{-s}|$ $$ \begin{align*} \Lambda^{s} u(x) &= \frac{(2\pi)^s\,|\omega_{-s}|}{\omega_{1+s}}\,\int_{\mathbb R}\frac{u(x)-u(z)}{|x-z|^{1+s}} \,\mathrm d y \end{align*} $$ which is Formula $\eqref{1}$.

LL 3.14
  • 12,457