1

This 2021 post discusses the continued fraction, $$F_4=1+\cfrac{1/1}{1+\cfrac{1/3}{1+\cfrac{1/5}{1+\cfrac{1/7}{1+\ddots}}}}= \frac{2}{ 1+\displaystyle\frac{I_1(1/4)}{I_0(1/4)}}=1.7793\dots$$

where $I_n(x)$ is the "modified Bessel function of the first kind". Using a transformation, we find this is equivalent to the equally nice,

$$F_4=1+\cfrac{1}{1+\cfrac{1}{3+\cfrac{3}{5+\cfrac{5}{7+\ddots}}}}= \frac{2}{ 1+\displaystyle\frac{I_1(1/4)}{I_0(1/4)}}=1.7793\dots$$

Defining the function,

$$F_k = \frac{2}{ 1+\displaystyle\frac{I_1(1/k)}{I_0(1/k)}}\quad$$

we get the simple continued fraction expansions via Wolfram,

\begin{align} F_2&=(1, 1, \color{blue}1, 1, 1, \color{blue}3, 1, 1, \color{blue}{5}, 1, 1, \color{blue}{7}, 1, 1, \color{blue}{9}, 1, 1,\dots)\\ F_3&=(1, 1, \color{blue}2, 1, 1, \color{blue}5, 1, 1, \color{blue}{8}, 1, 1, \color{blue}{11}, 1, 1, \color{blue}{14}, 1, 1,\dots)\\ F_4&=(1, 1, \color{blue}3, 1, 1, \color{blue}7, 1, 1, \color{blue}{11}, 1, 1, \color{blue}{15}, 1, 1, \color{blue}{19}, 1, 1,\dots)\end{align}

where we use all commas for simplicity. But I've seen similar regular behavior before, in $e$,

\begin{align} 1+1/e^{1/2}&=(1, 1, \color{blue}1, 1, 1, \color{blue}5, 1, 1, \color{blue}{9}, 1, 1, \color{blue}{13}, 1, 1, \color{blue}{17}, 1, 1,\dots)\\ 1+1/e^{1/3}&=(1, 1, \color{blue}2, 1, 1, \color{blue}8, 1, 1, \color{blue}{14}, 1, 1, \color{blue}{20}, 1, 1, \color{blue}{26}, 1, 1,\dots)\\ 1+1/e^{1/4}&=(1, 1, \color{blue}3, 1, 1, \color{blue}{11}, 1, 1, \color{blue}{19}, 1, 1, \color{blue}{27}, 1, 1, \color{blue}{35}, 1, 1,\dots)\end{align}

Note the "natural" cfracs of the Bessel ratios,

$$P_m =\cfrac{1}{1m +\cfrac{1}{2m + \cfrac{1}{3m + \ddots}}} = \frac{I_1(2/m)}{I_0(2/m)} = \frac{2}{F_{m/2}-1} = \;??\quad $$

$$Q_m =\cfrac{1}{1m +\cfrac{1}{3m + \cfrac{1}{5m + \ddots}}} = \frac{I_{1/2}(1/m)}{I_{-1/2}(1/m)} =\frac{e^{2/m}-1}{e^{2/m}+1} $$

thus we can express $e^{1/n}$ in terms of the second Bessel ratio $\dfrac{I_{1/2}(u)}{I_{-1/2}(u)}$.


Q: So can we also express $e^{1/n}$ in terms of the first Bessel ratio $\dfrac{I_{1}(v)}{I_{0}(v)}$?

  • 1
    It is known that $J_{1/2}(x)$ is (constant times) $\sin x$ and $I_{1/2}(x)$ is (constant times) $\sinh x$. Bessel functions other than half-integer order are not elementary functions. – GEdgar Dec 29 '23 at 11:50
  • @GEdgar Well, I guess it was worth a try. – Tito Piezas III Dec 29 '23 at 12:35

0 Answers0