My question concerns the following sequence :
$$u_0=0+\frac{1}{2} \quad u_1 =0+\frac{1}{2+\frac{3}{4}} = \frac{4}{11} \quad u_2=0+\frac{1}{2+\frac{3}{4+\frac{5}{6}}}=\frac{29}{76} \quad u_3=0+\frac{1}{2+\frac{3}{4+\frac{5}{6+\frac{7}{8}}}}=\frac{52}{137}$$
It is distinct from the harmonic continued fraction : Convergence of a Harmonic Continued Fraction
It can be defined by the recurrence relation : $$v_n=2n+1-\frac{1}{2n+2} \qquad v_{k}=2k+\frac{2k+1}{v_{k+1}} \quad (0\leq k <n) (*)$$
Applying the formula (*) $n$ times, we have $u_n=v_0$.
A simple Python script gives the following results : $$ \frac{1}{2}, \frac{4}{11}, \frac{29}{76}, \frac{52}{137}, \frac{2861}{7534}, \frac{37192}{97943}, \frac{557881}{1469144} $$ The sequence seems to converge to $\ell\approx 0.37973195474099564$
from fractions import Fraction
def f(n):
v = Fraction(2 * n + 1, 1) - Fraction(1, 2 * n + 2)
for i in range(n - 1, -1, -1):
v = Fraction(2 * i, 1) + Fraction(2 * i + 1, v)
return v
print([f(k) for k in range(10)])
Here is my question : what is the exact value of $\ell$ and how can we prove it?