I was trying to compute the integral given in this question using Laplace transform.
I began by declaring
$$\ I(a) = \int_0^{1} \frac{x^a-1}{\operatorname{ln}x\cdot (1+x^3)} dx$$
Taking the Laplace transform on both sides, we have:
$$\mathcal L(I(a))(s) = \int_0^{1}\frac{ \mathcal L(x^a) - \mathcal L(1)}{\operatorname{ln}x\cdot (1+x^3)} dx$$ $$ = \int_0^{1} \frac{dx}{s\cdot (s-\operatorname{ln}x) \cdot (1+x^3)}$$
Then I substituted $s-\operatorname{ln}x = t$. The Laplace transform then simplifies into
$$\mathcal L(I(a)(s) = \frac{e^s}{s} \cdot \int_s^{\infty} \frac{e^{-t}}{t(1+e^{3(s-t)})}dt$$
$$\mathcal L(I(a)(s) = \frac{e^s}{s} \cdot \int_s^{\infty} \frac{e^{-t}}{t}\cdot \sum_{n=0}^{\infty} \big(e^{(2n)(3s-3t)} - e^{(2n+1)(3s-3t)}\big)dt$$ $$ = \frac{1}{s} \cdot \sum_{n=0}^{\infty} \int_s^{\infty} \frac{e^{(6n+1)(s-t)} - e^{(6n+4)(s-t)}}{t} dt $$
I am unable to proceed with this. Can anyone help me evaluate this expression?
Any help is appreciated. Thank you for reading.