Note that $\int_0^1 x^s\,ds=\frac{x-1}{\log(x)}$. Then, we have
$$\int_0^1\frac{x-1}{\log(x)(x^3+1)}\,dx=\int_0^1\int_0^1 \frac{x^s}{(x^3+1)}\,ds\,dx$$
Now we apply Fubini's Theorem to interchange the order of integration to reveal
$$\int_0^1\frac{x-1}{\log(x)(x^3+1)}\,dx=\int_0^1\int_0^1 \frac{x^s}{(x^3+1)}\,dx\,ds$$
Next, we expand the denominator in a geometric series to find that
$$\begin{align}
\int_0^1\frac{x-1}{\log(x)(x^3+1)}\,dx&=\sum_{n=0}^\infty (-1)^n\int_0^1\int_0^1 x^{s+3n}\,dx\,ds\\\\
&=\sum_{n=0}^\infty (-1)^n \log\left(\frac{3n+2}{3n+1}\right)
\end{align}$$
Can you finish now?
BONUS:
To evaluate the final series we appeal to the digamma function, its relationship with the Gamma function, and Euler's reflection formula. Proceeding, we write
$$\begin{align}
\sum_{n=0}^\infty (-1)^n\log\left(\frac{3n+2}{3n+1}\right)&=\int_0^1 \sum_{n=0}^\infty (-1)^n \frac1{s+3n+1}\,ds\\\\
&=\int_0^1 \sum_{n=0}^\infty\left(\frac1{6n+s+1}-\frac1{6n+s+4}\right)\,ds\\\\
&=\frac16\int_0^1\left(\psi((s+4)/6)-\psi((s+1)/6)\right)\,ds\\\\
&=\log\left(\frac{\Gamma(5/6)\Gamma(1/6)}{\Gamma(2/3)\Gamma(1/3)}\right)\\\\
&=\log\left(\frac{\sin(2\pi/3)}{\sin(5\pi/6)}\right)\\\\
&=\log(\sqrt 3)
\end{align}$$
as expected!