Here is a approach. Let $I$ denote the integral. Then substituting $x = e^t$, we get
\begin{align*}
I
= \int_{0}^{\infty} \left( \frac{x-1}{\log x}\right)^2 \frac{\mathrm{d}x}{x^4 + 1}
= \int_{-\infty}^{\infty} \frac{e^t(e^t - 1)^2}{t^2(e^{4t} + 1)} \, \mathrm{d}t = \int_{-\infty}^{\infty} \frac{f(t)}{t^2} \, \mathrm{d}t
\end{align*}
where
$$ f(z) = \frac{2\sinh^2(z/2)}{\cosh(2z)}. $$
Note that $f(z)$ is a $2\pi i$-periodic meromorphic function on $\mathbb{C}$ that converges to $0$ uniformly in $\operatorname{Re}{z} \to \pm \infty$. So by considering a CCW-oriented rectangular contour $\mathcal{C}_{R,N}$ with the four corners $\pm R$, $\pm R + 2N \pi i$ for $R > 0$ and $N \in \mathbb{N}$ and then letting $R \to \infty$ and $N \to \infty$ so that $Ne^{-R} \to 0$, we get
\begin{align*}
I
&= \lim_{\substack{R,N \to \infty \\ Ne^{-R} \to 0}} \oint_{\mathcal{C}_{R,N}} \frac{f(z)}{z^2} \, \mathrm{d}z \\
&= 2\pi i \sum_{k=1,3,5,\ldots} \underset{z=k\pi i/4}{\mathrm{Res}} \frac{f(z)}{z^2} \qquad \text{as $N\to\infty$} \\
&= \frac{8}{\pi} \biggl( \frac{2-\sqrt{2}}{1^2} + \frac{-2-\sqrt{2}}{3^2} + \frac{2+\sqrt{2}}{5^2} + \frac{-2+\sqrt{2}}{7^2} \\
&\hspace{2em} + \frac{2-\sqrt{2}}{9^2} + \frac{-2-\sqrt{2}}{11^2} + \frac{2+\sqrt{2}}{13^2} + \frac{-2+\sqrt{2}}{15^2} + \cdots \biggr) \\
&= \frac{16}{\pi} \biggl( \frac{5}{4} \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(2k-1)^2} - \sum_{k=1}^{\infty} \frac{\sin(\pi k/4)}{k^2} \biggr) \\
&= \frac{16}{\pi} \biggl( \frac{5}{4} G - \operatorname{Im}(\operatorname{Li}_2(e^{i\pi/4}) \biggr).
\end{align*}
Here,
$$ G = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(2k-1)^2}
\qquad\text{and}\qquad \operatorname{Li}_2(z) = \sum_{k=1}^{\infty} \frac{z^k}{k^2} $$
are Catalan's constant and the dilogarithm function, respectively. As to my knowledge, neither $G$ nor $\operatorname{Im}(\operatorname{Li}_2(e^{i\pi/4}))$ has known elementary closed forms.