\begin{align}J=\int_0^{\frac{\pi}{8}}\ln\left(\tan x\right)\,dx\end{align}
Perform the change of variable $y=\left(\sqrt{2}+1\right)\tan x$,
\begin{align}J&=(\sqrt{2}-1)\int_0^{1}\frac{\ln\big((\sqrt{2}-1)x\big) }{1+(\sqrt{2}-1)^2x^2}\,dx\\
&=(\sqrt{2}-1)\int_0^{1}\frac{\ln\big(\sqrt{2}-1\big) }{1+(\sqrt{2}-1)^2x^2}\,dx+(\sqrt{2}-1)\int_0^{1}\frac{\ln x }{1+(\sqrt{2}-1)^2x^2}\,dx\\
&=\frac{\pi}{8}\ln\big(\sqrt{2}-1\big)+(\sqrt{2}-1)\int_0^{1}\frac{\ln x }{1+(\sqrt{2}-1)^2x^2}\,dx\\
&=\frac{\pi}{8}\ln\big(\sqrt{2}-1\big)+\frac{1}{2}\big(\sqrt{2}-1\big)\int_0^1\frac{\ln x}{1-i\big(1-\sqrt{2}\big)x}\,dx+\frac{1}{2}\big(\sqrt{2}-1\big)\int_0^1\frac{\ln x}{1-i\big(\sqrt{2}-1\big)x}\,dx\\
&=\boxed{\frac{\pi}{8}\ln\big(\sqrt{2}-1\big)+\frac{1}{2}i\text{Li}_2\left(i\big(\sqrt{2}-1\big)\right)-\frac{1}{2}i\text{Li}_2\left(i\big(1-\sqrt{2}\big)\right)}
\end{align}
NB:
For $0<|z|<1$ complex,
\begin{align}\int_0^1 \frac{\ln x}{1-zx}\,dx&=\int_0^1 \left(\sum_{n=0}^{\infty}(xz)^n\right)\ln x\,dx\\
&=\sum_{n=0}^{\infty} z^n\left(\int_0^1 x^n\ln x\,dx\right)\\
&=-\sum_{n=0}^{\infty} \frac{z^n}{(n+1)^2}\\
&=-\frac{1}{z}\sum_{n=0}^{\infty} \frac{z^{n+1}}{(n+1)^2}\\
&=-\frac{1}{z}\text{Li}_2(z)
\end{align}
PS:
if you prefer,
\begin{align}\boxed{J=\frac{\pi}{8}\ln\big(\sqrt{2}-1\big)-\Im{\left(\text{Li}_2\left(i\big(\sqrt{2}-1\big)\right)\right)}}\end{align}