If you do not bother evaluating the second integral directly, we could still have elementary approach, let $x\mapsto\frac{1-x}{1+x}$
$$
\begin{aligned}
\int_{0}^{1} \frac{x^3}{1+x^4}\operatorname{artanh}x\,\mathrm{d}x
&=-\frac1{2} \int_{0}^{1} \frac{x^3}{1+x^4}\ln\left(\frac{1-x}{1+x}\right) \mathrm{d}x\\
&=-\frac1{2} \int_{0}^{1} \frac{(1-x)^3}{(1+6x^2+x^4)(1+x)}\ln x\,\mathrm{d}x\\
&=-\frac1{2} \left(\int_{0}^{1} \frac{\ln x}{1+x}\,\mathrm{d}x - \int_{0}^{1} \frac{3x+x^3}{1+6x^2+x^4}\ln x\,\mathrm{d}x\right)
\end{aligned}
$$
where integrating by parts
$$
\begin{aligned}
\int_{0}^{1} \frac{3x+x^3}{1+6x^2+x^4}\ln x\,\mathrm{d}x
&=-\frac1{4}\int_{0}^{1} \frac{\ln(1+6x^2+x^4)}{x}\,\mathrm{d}x\\
&=-\frac1{8}\int_{0}^{1} \frac{\ln(1+6x+x^2)}{x}\,\mathrm{d}x
\end{aligned}
$$
recalling for $a>0$ that
$$
\int_{0}^{1} \frac{\ln((x+a)(x+\frac1{a}))}{x}\,\mathrm{d}x = -\left(\operatorname{Li}_2(-a)+\operatorname{Li}_2\left(-\frac1{a}\right)\right) = \frac{\pi^2}{6}+\frac{\ln^2a}{2}
$$
plug-in $a=3-2\sqrt2=(\sqrt2-1)^2$ or $a=3+2\sqrt2=(\sqrt2+1)^2$ we have
$$
\int_{0}^{1} \frac{x^3}{1+x^4}\operatorname{artanh}x\,\mathrm{d}x = \frac{\pi^2}{32}-\frac{\ln^2(\sqrt2+1)}{8}
$$
where the primary part of our integral, namely
$$
\int_{0}^{1} \frac{\ln(1+6x+x^2)}{x}\,\mathrm{d}x
$$
happen to coincide with the equivalent form of some typical integrals
$$
\int_{0}^{1} \frac{x}{1+x^4}\arctan x\,\mathrm{d}x = \frac1{4} \int_{0}^{\pi/2}\arctan(\sin x)\,\mathrm{d}x = \frac1{4} \left(\frac{\pi^2}{8}-\frac{\ln^2(\sqrt2+1)}{2} \right)
$$
which you may have more insight by yourself.