I am trying to evaluate the following integral, so far I tried 2 different ways, but could not finish the proof. Through the second method, it seems that I got closer
$$\int_{0}^{\pi/2}\arctan(\sin(x))dx=\frac{\pi^2}{8}-\frac{\ln^2(\sqrt{2}-1)}{2}$$
First Method
Consider the more general version with parameter k
$$I(k)=\int_{0}^{\pi/2}\arctan(k\sin(x))dx$$
$$I^{\prime}(k)=\int_{0}^{\pi/2}\frac{\sin(x)}{1+k^2\sin^2(x)}dx$$
$$I^{\prime}(k)=\int_{0}^{\pi/2}\frac{\sin(x)}{\cos^2(x)+\sin^2(x)+k^2\sin^2(x)}dx$$
$$I^{\prime}(k)=\int_{0}^{\pi/2}\frac{\sin(x)}{\cos^2(x)+(1+k^2)\sin^2(x)}\frac{1}{\frac{\sin^2(x)}{\sin^2(x)}}dx$$
$$I^{\prime}(k)=\int_{0}^{\pi/2}\frac{\csc(x)}{\cot^2(x)+(1+k^2)}dx$$
substitution $\cot^2(x)=t$ does not seem very helpful.
Second Method
let $\sin(x)\longrightarrow x$
$$\int_{0}^{\pi/2}\arctan(\sin(x))dx=\int_{0}^{1}\frac{\arctan(x)}{\sqrt{1-x^2}}dx$$
integrating by parts
$$\int_{0}^{1}\frac{\arctan(x)}{\sqrt{1-x^2}}dx=\arctan(x)\cdot\arcsin(x)|_{0}^{1}-\int_{0}^{1}\frac{\arcsin(x)}{1+x^2}dx$$
$$=\frac{\pi^2}{8}-\underbrace{\int_{0}^{1}\frac{\arcsin(x)}{1+x^2}dx}_{J}$$
using the expansion of $\arcsin(x)$
$$J=\int_{0}^{1}\frac{\arcsin(x)}{1+x^2}dx=\sum_{n=0}^{\infty}\frac{(2n)!}{2^{2n}(n!)^2}\frac{1}{2n+1}\int_{0}^{1}\frac{x^{2n+1}}{1+x^2}dx$$
Can someone indicate a method to help me finish at least one of the two methods? Thank you