Let $\xi$, $\eta$ and $\lambda$ be independent random variables uniformly distributed on the interval $[0,1]$, and let $t$ be a fixed number. Find $P(\xi+\eta < t\lambda)$.
My solution:
1)Let the V random variable $=X+Y.P(X+Y \leq z)= \int_0^z \int_0^1f_x(x)f_y(y-x)dxdy$. Than $P(V<\lambda t)=\int_0^tP(V\leq\lambda_i|\lambda=\lambda_i)f_{\lambda t}(z)dz = P(V\leq\lambda_i)f_\lambda(z)dz =\int_0^t\int_0^z\int_0^1(f_x(x)f_y(y-x)dxdy)f_{\lambda t}(z)dz$
2)$\int_0^z\int_0^1(f_x(x)f_y(y-x)dxdy) = \int_0^z\int_0^z(f_x(x)f_y(y-x)dxdy)$ Because x and y >=0 ,and when x or y >z $P(X+Y\leq z)$=0.
3)We need only positive values f_y(y-x) ,due to symmetry $\int_0^z\int_0^1(f_x(x)f_y(y-x)dxdy) =\frac{\int_0^z\int_0^zdxdy}{2} = \frac{z^2}{2}$
And in the end
4)$\int_0^t\frac{z^2}{2}f_{\lambda t}(z)dz = \frac{t^2}{6}$(It is easy to prove that$f_{\lambda t}(z)=\frac{1}{t} z\in [0, t]$)
I am not sure of the correctness of this decision, or rather in paragraph 3.
I will be glad if you can help me solve this problem.