The conjecture is true for $n=3$.
Consider the integral
$$
I_3=\int_{[0,\pi/2]^3}\frac{\tan x_1\tan x_2\tan x_3}{\tan x_1+\tan x_2+\tan x_3}dx_1dx_2dx_3=\int_{[0,\infty]^3}\frac{xyz}{x+y+z}\frac{dxdydz}{(1+x^2)(1+y^2)(1+z^2)}
$$
With change of variables $x=\tan x_1,y=\tan x_2,z=\tan x_3$. Now switch to spherical coordinates.
$$
I_3=\int_0^\infty r^2dr\int_0^{\pi/2}\sin(\theta) d\theta\int_0^{\pi/2}d\varphi \frac{r^2\sin ^2(\theta ) \cos (\theta ) \sin (\varphi ) \cos (\varphi )}{\sin (\theta ) (\sin (\varphi )+\cos (\varphi ))+\cos (\theta )}\frac{1}{\left(r^2 \cos ^2(\theta )+1\right) \left(r^2 \sin ^2(\theta ) \sin ^2(\varphi )+1\right) \left(r^2 \sin ^2(\theta ) \cos ^2(\varphi )+1\right)}
$$
The $r$ part is just rational integral, which is easily done from partial fractions
$$
\frac2\pi\int_0^\infty\frac{r^4}{\left(r^2 \cos ^2(\theta )+1\right) \left(r^2 \sin ^2(\theta ) \sin ^2(\varphi )+1\right) \left(r^2 \sin ^2(\theta ) \cos ^2(\varphi )+1\right)}dr\\
=\frac{\sec (\theta )}{\left(\cos ^2(\theta )-\sin ^2(\theta ) \cos ^2(\varphi )\right) \left(\cos ^2(\theta )-\sin ^2(\theta ) \sin ^2(\varphi )\right)}+\frac{\csc ^5(\theta ) \sec (\varphi ) \sec (2 \varphi )}{\cos ^2(\varphi )-\cot ^2(\theta )}-\frac{\csc ^5(\theta ) \csc (\varphi ) \sec (2 \varphi )}{\sin ^2(\varphi )-\cot ^2(\theta )}\\
=\frac{\sin (\theta ) (\sin (\varphi )+\cos (\varphi ))+\cos (\theta )}{((\sin (\varphi )+\cos (\varphi )) (\sin (\theta ) \cos (\varphi )+\cos (\theta )) (\sin (\theta ) \sin (\varphi )+\cos (\theta ))) \left(\sin ^3(\theta ) \cos (\theta ) \sin (\varphi ) \cos (\varphi )\right)}
$$
Plug back into $I_3$, lots of terms cancel out, and
$$
I_3=\frac\pi2\int_0^{\pi/2}\frac{d\varphi}{\sin (\varphi )+\cos (\varphi )}\int_0^{\pi/2}\frac{d\theta}{ (\sin (\theta ) \cos (\varphi )+\cos (\theta )) (\sin (\theta ) \sin (\varphi )+\cos (\theta ))}\\
=\frac\pi2\int_0^{\pi/2}\frac{\log(\cot(\varphi))}{\cos(2\varphi)}d\varphi=\int_0^\infty \frac{\log t}{t^2-1}dt=\frac{\pi^3}8\qquad t=\cot(\varphi)
$$
The conjecture for $n=3$ is thus proved.
Unfortunately, such massive cancellation fails to occur when $n=4$, so at least this approach is not easy.
Appendix
For numerical evaluation,
$$
I_n=\int_{[0,\infty]^n}\frac{1}{x_1+\cdots+x_n}\frac{x_1dx_1}{1+x_1^2}\cdots\frac{x_ndx_n}{1+x_n^2}=\int_{[0,\infty]^n}\int_0^\infty e^{-t(x_1+\cdots+x_n)}dt\frac{x_1dx_1}{1+x_1^2}\cdots\frac{x_ndx_n}{1+x_n^2}\\
=\int_0^\infty\left(\int_0^\infty\frac{xe^{-xt}}{1+x^2}dx\right)^ndt=\int_0^\infty\left( \Big(\frac{\pi}{2} -\text{Si}(t)\Big) \sin (t)-\text{Ci}(t) \cos (t)\right)^ndt
$$
From this, it holds in high precision
$$
\left(\frac2\pi\right)^6I_4\approx 0.95596478957
$$
This result differs quite largely from the conjecture, so the latter is probably false. Indeed, finding a closed form is still tempting. I suspect polylogarithms could possibly appear in the result.
Interesting byproducts appear along my attempt, such as
$$
\int_0^{\infty } \frac{\log (x) \left(\left(x^2+2\right) \log \left(x^2+1\right)-2 x \tan ^{-1}(x)\right)}{\left(x^2+1\right) \left(x^2+4\right)} \, dx =\frac{\pi ^3}{9}\\
\int_0^{\infty } \frac{\left(x^2+2\right) \log \left(x^2+1\right)-2 x \tan ^{-1}(x)}{x \left(x^2+1\right) \left(x^2+4\right)} \, dx =\frac{\pi ^2}{36}
$$
It is invited to prove them. (The latter is easy)