$$\frac{\tan(\alpha)\tan(\beta)}{\tan(\alpha)+ \tan(\beta)}= -\cot(\alpha+ \beta) +\frac{1}{\tan(\alpha)+ \tan(\beta)}$$
$$\displaystyle I:=\int _0^{\frac{\pi}2}\int _0^{\frac{\pi}2}\frac{\tan(\alpha)\tan(\beta)}{\tan(\alpha)+ \tan(\beta)} d \alpha d \beta=\int _0^{\frac{\pi}2}\int _0^{\frac{\pi}2}-\cot(\alpha+ \beta) +\frac{1}{\tan(\alpha)+ \tan(\beta)} d \alpha d \beta$$
$\\[4pt]$
for $\displaystyle \int \frac{1}{\tan x+ c}dx$ let $\tan x = t $ then $$\int \frac{1}{\tan x+ c}dx= \int \frac{1}{(t^2+1)(t+c)}dt$$ $$=\frac{c}{c^2+1}\int\frac{1}{1+t^2} dt -\frac{1}{2(c^2+1)}\int \frac{2t}{t^2+1}dt + \frac{1}{c^2+1}\int\frac{1}{c+t} dt $$
$$\frac{c}{c^2+1} \arctan(t) - \frac{1}{2(c^2+1)}\ln|t^2+1| +\frac{1}{c^2+1} \ln|t+c|$$
$$=\frac{c}{c^2+1} x +\frac{1}{(c^2+1)}\ln|\cos(x)| +\frac{1}{c^2+1} \ln|\tan(x)+c|$$
$\\[3pt]$
$$I=\int _0^{\frac{\pi}2} \biggr|-\ln|\sin(\alpha + \beta)| + \frac{\tan(\beta)}{\sec^2(\beta)} \alpha +\frac{1}{(\sec^2(\beta))}\ln|\cos(\alpha)| +\frac{1}{\sec^2(\beta)} \ln|\tan(\alpha)+\tan(\beta)|\biggr|_0 ^{\frac{\pi}{2}} d\beta$$
$$=\int _0^{\frac{\pi}2} \ln|\tan(x)| +\frac{\pi}{4}\sin(2\beta )+ \cos^2(\beta )(-\ln(\tan(\beta))) d\beta$$
first we can see that $\displaystyle \int _0 ^ \frac{\pi}{2}\ln(\tan(\alpha)) d\alpha= \int _{0}^ \frac{\pi}{2} \ln ( \cot \alpha)du =0 $ because $\displaystyle \int _0 ^ \frac{\pi}{2}\ln(\tan(\alpha)) d\alpha =-\int _0 ^ \frac{\pi}{2}\ln(\tan(\alpha)) d\alpha$ by king's rule
and $\displaystyle \int_0^{\frac{\pi}{2}} \sin(2\beta) d \beta =-\frac{\cos(2\beta)}{2} \biggr|_0^{\frac{\pi}{2}} = 1$ so that means
$$I = \frac{\pi}{4} - \int _0^{\frac{\pi}{2}}\cos^2(\beta)\ln(\tan(\beta)) d\beta$$
$$J:=\int _0^{\frac{\pi}{2}}\cos^2(\beta)\ln(\tan(\beta)) d\beta=\int _0^{\frac{\pi}{2}}\cos^2(\beta)\ln(\sin(\beta)) d\beta-\int _0^{\frac{\pi}{2}}\cos^2(\beta)\ln(\cos(\beta)) d\beta $$
$$=\int _0^{\frac{\pi}{2}}\cos^2(\beta)\ln(\sin(\beta)) d\beta+\int _0^{\frac{\pi}{2}}\ln(\cos(\beta)) (1-\cos^2(\beta)) d\beta -\int _0^{\frac{\pi}{2}} \ln(\cos(\beta)) d\beta $$
since $\displaystyle \int _0^{\frac{\pi}{2}}\cos^2(\beta)\ln(\sin(\beta)) d\beta=\int _0^{\frac{\pi}{2}}\ln(\cos(\beta)) (\sin^2(\beta)) d\beta$ by king's rule so
$$J = 2\int _0^{\frac{\pi}{2}}\cos^2(\beta)\ln(\sin(\beta)) d\beta-\int _0^{\frac{\pi}{2}} \ln(\cos(\beta)) d\beta $$
let $\displaystyle y= \sin(\beta)$
$$=2\int _0^{1}\ln(y)\sqrt{1-y^2}dy -\int _0^{\frac{\pi}{2}} \ln(\cos(\beta)) d\beta $$
here I will use integration by parts and integrate $\sqrt{1-y^2} $
$$J=y \ln(y)\sqrt{1-y^2} +\arcsin(y)\ln(y)\biggr|_0^1 -\int_0^1 \sqrt{1-y^2} dy - \int_0^1 \frac{\arcsin{y}}{y} dy -\int _0^{\frac{\pi}{2}} \ln(\cos(\beta)) d\beta $$
since $\displaystyle \lim\limits_{y \to 0}y \ln (y) =0$(why ? use L'Hôpital's rule) and $\lim\limits_{y \to 0}\arcsin{y} \ln (y) =0$(why ? substitute $\sin(t) = x$ and use L'Hôpital's rule )
and since $\displaystyle \int _0 ^1 \sqrt{1-y^2} dy = \frac{\pi}{4}$
$$J= -\frac{\pi}{4 } + \int_0^1 \frac{\arcsin{y}}{y} dy -\int _0^{\frac{\pi}{2}} \ln(\cos(\beta)) d\beta $$
$$-\frac{\pi}{4 } -\int _0^{\frac{\pi}{2}} \beta \cot(\beta) d\beta -\int _0^{\frac{\pi}{2}} \ln(\cos(\beta)) d\beta $$
$$=-\frac{\pi}{4 } - \beta \ln(\sin ( \beta))\biggr|_{0}^{\frac{\pi}{2}} +\int _0^{\frac{\pi}{2}} \ln(\cos(\beta)) d\beta -\int _0^{\frac{\pi}{2}} \ln(\cos(\beta)) d\beta $$
$$= -\frac{\pi}{4 }$$
so $$\color{red}{I = \frac{\pi}{4} -J =\frac{\pi }{2}}$$