If $n$ is an integer, is there a nice way to write the partial fraction expansion of $\frac{1}{x^n - 1}$? I figure that if $\zeta$ is the $n$-th root of unity, then for some coefficients $a_0, a_1, \ldots, a_{n-1}$ we may write
$$ \frac1{x^n - 1} = \frac{a_0}{x - 1} + \frac{a_1}{x - \zeta} + \frac{a_2}{x - \zeta^2} + \ldots + \frac{a_{n-1}}{x - \zeta^{n-1}}. $$
Then for $0 \leq i \leq n -1$, $$ a_i = \lim_{x \to \zeta^i} \frac{x - \zeta^i}{x^n - 1} = \frac1{(\zeta^{i} - 1) \cdots (\zeta^i - \zeta^{i-1}) (\zeta^i - \zeta^{i + 1}) \cdots (\zeta^i - \zeta^{n-1})}. $$ Is there a simpler expression for this and if so, how could I see it easily?