(Note: Positive integers throughout, except where specified.)
I. Parameterization
Following on from this excellent question from Tito Piezas III, "Sums of Cubes of form $a^3+b^3+c^3=(c+1)^3$". Piezas observed there were pairs that shared the same $c$, hence the same sum $c+1$, for example,
\begin{align} 9^3+58^3+255^3 &=256^3\\ 22^3+57^3+255^3 &=256^3 \end{align}
So I have produced 4405 solutions to $a^3+b^3+c^3=(c+1)^3$ up to $c=3.15\times10^8,$ then extracted $128$ solutions (given in next section) that share the same sum,
$$a^3+b^3+c^3=A^3+B^3+c^3=(c+1)^3$$
For the eight cases where $b-B=1$, I have found a parametric solution
$$a=9n^3$$ $$b=27n^4+18n^3+9n^2+3n+1$$ $$c=81n^6+81n^5+54n^4+27n^3+9n^2+3n$$ $$A=9n^3+9n^2+3n+1$$ $$B=27n^4+18n^3+9n^2+3n$$
Proof: Just expand and equate.
Non-positive $n$ give incorrect results if negative results are moved to change sign. For the majority of cases where $b-B\gt1,$ I have not yet found parametric solutions.
Results:
(n,a,b,c,A,B)
(1,9,58,255,22,57)
(2,72,619,8898,115,618)
(3,243,2764,83925,334,2763)
(4,576,8221,430428,733,8220)
(5,1125,19366,1556115,1366,19365)
(6,1944,39223,4485150,2287,39222)
(7,3087,71464,11030313,3550,71463)
(8,4608,120409,24123480,5209,120408)
For $n=1$ to $8$ these agree with the expected results.
My question:
Can you please find parametric solutions for one or more of the following groups of numerical solutions below to $a^3+b^3+c^3=A^3+B^3+c^3=(c+1)^3$ ?
P.S. Failing that, a link to a reliable sequence formula calculator, or a detailed worked example of converting difference tables to formula manually.
II. Raw Data
The 128 solutions below are sorted by $b-B = k$ for $k\leq 103$, including 28 with $k> 103.$
128 = 16 + 12 + 8 + 2 + 8 + 2 + 6 + 2 + 4 + 4 + 2 + 4 + 2 + 4 + 4 + 2 + 4 + 4 + 4 + 2 + 4 + 28
Data for $b-B=1$
(22,57,255)
(9,58,255)
(115,618,8898)
(72,619,8898)
(334,2763,83925)
(243,2764,83925)
(733,8220,430428)
(576,8221,430428)
(1366,19365,1556115)
(1125,19366,1556115)
(2287,39222,4485150)
(1944,39223,4485150)
(3550,71463,11030313)
(3087,71464,11030313)
(5209,120408,24123480)
(4608,120409,24123480)
Data for $b-B=7$
(51,82,477)
(64,75,477)
(294,847,14526)
(343,840,14526)
(1302,5971,267762)
(1435,5964,267762)
(2841,16672,1245927)
(3064,16665,1245927)
(6333,48004,6079299)
(6712,47997,6079299)
(10302,91321,15944352)
(10825,91314,15944352)
Data for $b-B=13$
(1956,6631,315726)
(2095,6618,315726)
(2892,11137,684480)
(3073,11124,684480)
(13683,87400,14946453)
(14194,87387,14946453)
(16941,116026,22853211)
(17530,116013,22853211)
Data for $b-B=18$
(69,1018,18755)
(381,1000,18755)
Data for $b-B=19$
(594,1003,20154)
(643,984,20154)
(1719,4258,165609)
(1828,4239,165609)
(11673,54700,7421991)
(12076,54681,7421991)
(18738,102595,19030386)
(19291,102576,19030386)
Data for $b-B=30$
(7739,92810,16328917)
(10739,92780,16328917)
Data for $b-B=31$
(822,1009,22968)
(865,978,22968)
(7401,21256,1826583)
(7648,21225,1826583)
(23403,98914,18079365)
(23944,98883,18079365)
Data for $b-B=33$
(37,174,1331)
(136,141,1331)
Data for $b-B=37$
(2709,4762,206451)
(2818,4725,206451)
(5796,13477,938532)
(5989,13440,938532)
Data for $b-B=43$
(19689,62740,9212247)
(20116,62697,9212247)
(35439,137650,29735697)
(36076,137607,29735697)
Data for $b-B=48$
(46,6441,298448)
(1810,6393,298448)
Data for $b-B=49$
(31359,106888,20429049)
(31918,106839,20429049)
(38523,140740,30794541)
(39166,140691,30794541)
Data for $b-B=57$
(1102,14421,1000067)
(3325,14364,1000067)
Data for $b-B=61$
(8124,14653,1107900)
(8317,14592,1107900)
(14685,32986,3608235)
(14986,32925,3608235)
Data for $b-B=67$
(5898,8629,531564)
(6037,8562,531564)
(26373,68104,10554939)
(26812,68037,10554939)
Data for $b-B=72$
(16,801,13088)
(502,729,13088)
Data for $b-B=73$
(4203,4780,247293)
(4294,4707,247293)
(44064,127975,26965902)
(44671,127902,26965902)
Raw data for $b-B=79$
(6558,8635,555546)
(6691,8556,555546)
(42855,116638,23561961)
(43432,116559,23561961)
Data for $b-B=91$
(19215,35266,4121265)
(19516,35175,4121265)
(31194,68563,10842210)
(31627,68472,10842210)
Data for $b-B=97$ (Second pair added by Piezas)
(11040,15253,1277268)
(11221,15156,1277268)
(60117, 159286, 37677027)
(60790, 159189, 37677027)
Data for $b-B=103$
(16545,25864,2697567)
(16792,25761,2697567)
(55326,136441,30051936)
(55945,136338,30051936)
More raw data for $k>103$
(39006,72487,12113622) (39439,72360,12113622)
(13380,14689,1361952) (13537,14556,1361952)
(21129,25888,2987895) (21352,25737,2987895)
(47781,78856,14135451)
(48220,78693,14135451)
(71169,133498,30219399)
(71758,133329,30219399)
(54477,80212,15030579)
(54904,80013,15030579)
(32835,35326,5147325)
(33076,35115,5147325)
(62517,80236,15925707)
(62920,79989,15925707)
(67881,78916,16373271)
(68260,78633,16373271)
(68346,72577,15292152)
(68689,72270,15292152)
(201,3166,102863)
(2097,2824,102863)
(3029,12038,768604)
(8021,10790,768604)
(865,20886,1742760)
(15273,17704,1742760)
(8781,72346,11244731)
(47997,64534,11244731)
Note: Despite checking and double-checking, mistakes happen (sorry). Please check before use.