Let
\begin{align*}
S &= \frac{1}{1}+\frac{1}{3}+\frac{1}{5}-\frac{1}{7}-\frac{1}{9}-\frac{1}{11}+\cdots \tag{1} \\
&= \sum_{n=0}^\infty (-1)^{n-1} \left( \frac{1}{6n+1}+\frac{1}{6n+3}+\frac{1}{6n+5} \right) \\
&= \sum_{n=0}^\infty (-1)^{n-1} \int_0^1 \left( x^{6n} + x^{6n+2} + x^{6n+4} \right) \, \mathrm{d}x \\
&= \int_0^1 \sum_{n=0}^\infty (-1)^{n-1} \left( x^{6n} + x^{6n+2} + x^{6n+4} \right) \, \mathrm{d}x \\
&= \underbrace{\int_0^1 \frac{1+x^2+x^4}{1+x^6} \, \mathrm{d}x}_{I} \tag{2}
\end{align*}
Now consider
$$I = \int_0^1 \frac{1+x^2+x^4}{1+x^6} \, \mathrm{d}x \tag{3}$$
replace $x \to 1/x$
$$I = \int_1^\infty \frac{1+x^2+x^4}{1+x^6} \, \mathrm{d}x \tag{4}$$
After adding $(3)$ and $(4)$
\begin{align*}
2I &= \int_0^\infty \frac{1+x^2+x^4}{1+x^6} \, \mathrm{d}x \\
I &= \frac{1}{12} \int_0^\infty \frac{y^{-5/6}+y^{-1/2}+y^{-1/6}}{1+y} \, \mathrm{d}y \\
&= \frac{1}{12} \left( \beta(1/6,5/6)+\beta(1/2,1/2)+\beta(5/6,1/6) \right) \tag{5} \\
&= \frac{1}{12} \left( 2 \Gamma(1/6) \Gamma(5/6) + \Gamma(1/2) \Gamma(1/2) \right) \tag{6} \\
&= \frac{5 \pi}{12} \tag{7}
\end{align*}
$5$:Using $\beta$ function
$6$:As $\beta(a,b)=\beta(b,a)$
$7$:Using Euler's reflection formula
So from $(2)$ and $(7)$ we get,
$$S = \frac{5 \pi}{12}.$$