My attempt was : $f(t) = \sum_{n=1}^{\infty}\frac{\sin(nx)}{2n+1}t^{2n+1}$, where $|t|\le 1$. So we can find $f'(t) = \displaystyle \Im\sum_{n=0}^{\infty}(e^{ix}t^2)^{n} = \Im\frac{1}{1-e^{ix}t^2} = \frac{t^2\sin(x)}{t^4-2\cos(x)t^2+1}$. So $f(t) = \displaystyle \int\frac{t^2\sin(x)}{t^4-2\cos(x)t^2+1}dt = \int\frac{t^2 \Im e^{ix}}{(t^2-e^{ix})(t^{2}-e^{-ix})}dt$.
Now if we decompose it and integrate, we will get $\displaystyle \frac{\pi-x}{8}t = \frac{\pi - x}{8}$(when $t = 1$), am I right?