For $m,n$, positive integers,
\begin{align}W_{m,n}=\int_0^{\frac{1}{2}}\frac{\ln^m(1-x)\ln^n x}{1-x}dx\end{align}
\begin{align}
K&=\int_0^1\frac{\ln(1-x)\ln^4 x}{1-x}dx\\
J_1&=\int_0^1\frac{\ln^4 (1+x)\ln x}{1+x}dx\overset{u=\frac{x}{1+x}}=-W_{5,0}+W_{4,1}\\
J_2&=\int_0^1\frac{\ln^3 (1+x)\ln^2 x}{1+x}dx\overset{u=\frac{x}{1+x}}=-W_{5,0}+2W_{4,1}-W_{3,2}\\
J_3&=\int_0^1\frac{\ln^2 (1+x)\ln^3 x}{1+x}dx\overset{u=\frac{x}{1+x}}=-W_{5,0}+3W_{4,1}-3W_{3,2}+W_{2,3}\\
J_4&=\int_0^1\frac{\ln (1+x)\ln^4 x}{1+x}dx\overset{u=\frac{x}{1+x}}=-W_{5,0}+4W_{4,1}-6W_{3,2}+4W_{2,3}-W_{1,4}\\
S&=-40J_1+40J_2-44J_3+23J_4=\boxed{21W_{5,0}-46W_{3,2}+48W_{2,3}-23W_{1,4}}\\
\int_0^{\frac{1}{2}}\frac{\ln^5\left(\frac{x}{1-x}\right)}{1-x}dx&=\boxed{-W_{5,0}+5W_{4,1}-10W_{3,2}+10W_{2,3}-5W_{1,4}+W_{0,5}}
\end{align}
Since,
\begin{align}W_{5,0}&=-\frac{\ln^6 2}{6}\\
W_{4,1}&\overset{\text{IBP}}=-\frac{1}{5}\Big[\ln^5(1-x)\ln x\Big]_0^{\frac{1}{2}}+\frac{1}{5}\underbrace{\int_0^{\frac{1}{2}}\frac{\ln^5(1-x)}{x}dx}_{u=1-x}\\
&=-\frac{\ln^6 2}{5}-\frac{8\pi^6}{315}-\frac{W_{0,5}}{5}\\
W_{3,2}&\overset{\text{IBP}}=-\frac{1}{4}\Big[\ln^4(1-x)\ln^2 x\Big]_0^{\frac{1}{2}}+\frac{1}{2}\underbrace{\int_0^{\frac{1}{2}}\frac{\ln^4(1-x)\ln x}{x}dx}_{u=1-x}\\
&=-\frac{\ln^6 2}{4}+\frac{1}{2}\underbrace{\int_0^1 \frac{\ln(1-u)\ln^4 u}{1-u}du}_{=K}-\frac{1}{2}W_{1,4}\\
\end{align}
then,
\begin{align}S&=\boxed{8\ln^6 2-23K+48W_{2,3}}\\
\int_0^{\frac{1}{2}}\frac{\ln^5\left(\frac{x}{1-x}\right)}{1-x}dx&=\boxed{10W_{2,3}+\frac{5\ln^6 2}{3}-5K-\frac{8\pi^6}{63}}\\
\frac{S}{48}-\frac{1}{10}\int_0^{\frac{1}{2}}\frac{\ln^5\left(\frac{x}{1-x}\right)}{1-x}dx&=\frac{K}{48}+\frac{4\pi^6}{315}\\
S&=K+\frac{64\pi^6}{105}+\frac{24}{5}\underbrace{\int_0^{\frac{1}{2}}\frac{\ln^5\left(\frac{x}{1-x}\right)}{1-x}dx}_{u=\frac{x}{1-x}}\\
&=\boxed{\frac{2\pi^6}{105}+K}
\end{align}
Computation of $K$.
\begin{align}K&\overset{\text{IBP}}=\left[\ln(1-x)\left(\int_0^x\frac{\ln^4 t}{1-t}dt-\int_0^1\frac{\ln^4 t}{1-t}dt\right)\right]_0^1+\\&\int_0^1\int_0^1\left(\frac{x\ln^4(tx)}{(1-x)(1-tx)}- \frac{\ln^4 t}{(1-x)(1-t)}\right)dtdx\\
&=\int_0^1\int_0^1\left(\frac{\ln^4 x+4\ln^3x\ln t+6\ln^2 x\ln^2 t+4\ln x\ln^3 t}{(1-x)(1-t)}-\frac{\ln^4(tx)}{(1-t)(1-tx)}\right)dtdx\\
&\overset{\text{Fubini}}=24\zeta(3)^2+\frac{4\pi^6}{45}+\int_0^1\int_0^1\left(\frac{\ln^4 x}{(1-x)(1-t)}-\frac{\ln^4(tx)}{(1-t)(1-tx)}\right)dtdx\\
&=24\zeta(3)^2+\frac{4\pi^6}{45}+\int_0^1\left(\frac{1}{1-t}\left(\int_0^1 \frac{\ln^4 x}{1-x}dx\right)-\frac{1}{t(1-t)}\left(\int_0^t\frac{\ln^4 u}{1-u}du\right)\right)dt\\
&=24\zeta(3)^2+\frac{4\pi^6}{45}+\int_0^1\left(\frac{1}{1-t}\left(\int_t^1 \frac{\ln^4 x}{1-x}dx\right)-\frac{1}{t}\left(\int_0^t\frac{\ln^4 u}{1-u}du\right)\right)dt\\
&\overset{\text{IBP}}=24\zeta(3)^2+\frac{4\pi^6}{45}-K+\underbrace{\int_0^1\frac{\ln^5 t}{1-t}dt}_{=-\frac{8\pi^6}{63}}\\
K&=\boxed{12\zeta(3)^2-\frac{2\pi^6}{105}}
\end{align}
Therefore,
\begin{align}\boxed{S=12\zeta(3)^2}\end{align}
Addendum
Bonus.
\begin{align}\boxed{\int_0^{\frac{1}{2}} \frac{\ln^2(1-x)\ln^3 x}{1-x}dx=-\frac{\ln^6 2}{6}-\frac{23\pi^6}{2520}+6\zeta(3)^2}\end{align}