Let
$$S_1=\sum_i|A_i|, \quad S_2= \sum_{i<j}|A_i \cap A_j|, \quad S_3=\sum_{i<j<k} |A_i \cap A_j \cap A_k| ,\quad \cdots$$
Define alternating partial sums $$R_1 = S_1,\quad R_2 = S_1 - S_2, \quad R_3 = S_1 - S_2 + S_3,\quad \cdots $$
I've long believed but never seen explicitly union bound / Bonferroni-type inequalities for finite cardinality sets:
$$R_2 \le R_4 \le \cdots \le \left|\bigcup_i A_i \right| \le \cdots \le R_3 \le R_1 $$
Can these be proved from the probability formulation? $|A_i \cup A_j| \le |A_i| + |A_j|$ just as $P(A_i \cup A_j) \le P(A_i) + P(A_j)$. My idea was define a discrete uniform distribution $U[1,n]$. Let $B_i$ be subsets of the domain and $A_i = x \in B_i$ for $x \sim U[1,n]$. Then $P(A_i) = |B_i|/n$ (I'm not sure if this notation is correct). Scaling by $n$, this should give the above bounds? Actually, can this be proved from first principles just using induction on inclusion-exclusion?