Let $A = A_1 \cup \cdots \cup A_n$. We first partition $A$ according to the value of $(\mathbf{1}_{A_i}, \ldots, \mathbf{1}_{A_n})$. More specifically, for each $\varepsilon \in \{ 0, 1\}^n$ we define $A_{\varepsilon}$ as
\begin{align*}
A_{\varepsilon}
= \{ \omega \in A : \mathbf{1}_{A_i}(\omega) = \varepsilon_i \text{ for all } i = 1, \ldots, n\}
= \bigcap_{i=1}^{n} A_{i,\varepsilon_i},
\end{align*}
where $A_{i,1} = A_i$ and $A_{i,0} = A\setminus A_i$ for each $i = 1, \ldots, n$. In other words, $A_{\varepsilon}$ is the set of all $\omega \in A$ such that $[\omega \in A_i \iff \varepsilon_i = 1]$ holds for all $i = 1, \ldots, n$. Then it is clear that
$$ A_j
= \{ \omega \in A : \mathbf{1}_{A_j}(\omega) = \varepsilon_j\}
= \bigcup_{\substack{\varepsilon \in \{0, 1\}^n \\ \varepsilon_j = 1}} A_{\varepsilon}. $$
Using this, we can rewrite the (unsigned) $k$-th term $S_k$ in the inclusion-exclusion formula as:
\begin{align*}
S_k
:= \sum_{i_1 < \ldots < i_k} |A_{i_1} \cap \cdots \cap A_{i_k}|
&= \sum_{i_1 < \ldots < i_k} \Biggl( \sum_{\varepsilon \in \{0, 1\}^n} |A_{\varepsilon}| \cdot \mathbf{1}_{\{\varepsilon_{i_1} = 1, \ldots, \varepsilon_{i_k} = 1\}} \Biggr) \\
&= \sum_{\varepsilon \in \{0, 1\}^n} |A_{\varepsilon}| \Biggl( \sum_{i_1 < \ldots < i_k} \mathbf{1}_{\{\varepsilon_{i_1} = 1, \ldots, \varepsilon_{i_k} = 1\}} \Biggr) .
\end{align*}
The parenthesized sum in the last line counts the number $k$-subsets of $\{i : \varepsilon_i = 1\}$, and so, it is evaluated as $\binom{|\varepsilon|}{k}$, where $|\varepsilon| = \varepsilon_1 + \cdots + \varepsilon_n$. So, the above double sum for $S_k$ is reduced to
\begin{align*}
S_k
&= \sum_{\varepsilon \in \{0, 1\}^n} \binom{|\varepsilon|}{k} |A_{\varepsilon}|. \tag{1}
\end{align*}
Using this, the sum of first $m$ terms in the inclusion-exclusion principle is given by
$$ \sum_{k=1}^{m} (-1)^{k-1} S_k
= \sum_{\varepsilon \in \{0, 1\}^n} \Biggl[ \sum_{k=1}^{m} (-1)^k \binom{|\varepsilon|}{k} \Biggr] |A_{\varepsilon}|. \tag{2} $$
To make use of this equality, we note that
\begin{align*}
\sum_{k=1}^{m} (-1)^{k-1} \binom{r}{k}
&= \sum_{k=1}^{m} (-1)^{k-1} \left[ \binom{r-1}{k-1} + \binom{r-1}{k} \right] \\
&= 1 + (-1)^{m-1}\binom{r-1}{m}
\ \begin{cases}
\geq 1, & \text{if $m$ is odd,} \\
\leq 1, & \text{if $m$ is even.}
\end{cases} \tag{3}
\end{align*}
So by plugging $\text{(3)}$ to $\text{(2)}$, we conclude:
\begin{align*}
\text{$m$ odd}
&\quad\implies\quad
\sum_{k=1}^{m} (-1)^{k-1} S_k \geq \sum_{\varepsilon \in \{0, 1\}^n} |A_{\varepsilon}| = |A|, \\
\text{$m$ even}
&\quad\implies\quad
\sum_{k=1}^{m} (-1)^{k-1} S_k \leq \sum_{\varepsilon \in \{0, 1\}^n} |A_{\varepsilon}| = |A|.
\end{align*}