We know that:
$$\arctan(x)=x-\dfrac{x^3}{3}+\dfrac{x^5}{5}-\dfrac{x^7}{7}+\cdots$$
Now,$$\int x^1\arctan(x) \,dx=\dfrac{x^3}{1\cdot3}-\dfrac{x^5}{3\cdot5}+\dfrac{x^7}{5\cdot7}+\cdots--(1)$$
$$\int x^3\arctan(x) \,dx=\dfrac{x^5}{1\cdot5}-\dfrac{x^7}{3\cdot7}+\dfrac{x^9}{5\cdot9}+\cdots--(2)$$
$$\int x^5\arctan(x) \,dx=\dfrac{x^7}{1\cdot7}-\dfrac{x^9}{3\cdot9}+\dfrac{x^11}{5\cdot11}+\cdots--(3)\cdots$$
Notice that if one were to add all these equations and replace $x$ with $i$, they would get the residual value from the square of the Leibniz pi formula times $i$.... I.E:
$$\dfrac{\pi}{4}\cdot\dfrac{\pi}{4}=\left(1-\dfrac{1}{3}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{9}+\cdots \right)\left(1-\dfrac{1}{3}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{9}+\cdots \right)$$
$$\dfrac{\pi^2}{16}=\dfrac{1}{1^2}+\dfrac{1}{3^2}+\dfrac{1}{5^2}+\dfrac{1}{7^2}+\cdots+2\left(-\dfrac{1}{1\cdot3}+\dfrac{1}{1\cdot5}-\dfrac{1}{1\cdot7}+\cdots-\dfrac{1}{3\cdot5}+\dfrac{1}{3\cdot7}+\cdots \right)$$
$$\dfrac{\pi^2}{16}=\left(\dfrac{1}{1^2}+\dfrac{1}{3^2}+\dfrac{1}{5^2}+\dfrac{1}{7^2}+\cdots \right)+2K(Say)--(@)$$
Upon replacing $x=i$ in each of the mentioned equations$(1,2,3)$, it becomes apparent that:$$\boxed{iK=\sum_{n=0}^{\infty}\int_{0}^{i} I^{2n+1} dx=\sum_{n=0}^{\infty} \int_{0}^{i}x^{2n+1}\arctan(x) dx}$$, Where $I^{1}=(1); I^{3}=(2); I^{5}=(3)\cdots$
$$I^{1}=\int_{0}^{i} x^1\arctan(x) \,dx=\dfrac{(x^2+1)\arctan(x)-x}{2}$$ $$I^{3}=\int_{0}^{i} x^3\arctan(x) \,dx=\dfrac{(3x^4-3)\arctan(x)-x^3+3x}{12}$$ $$I^{5}=\int_{0}^{i} x^5\arctan(x) \,dx=\dfrac{(15x^6+15)\arctan(x)-3x^5+5x^3-15x}{90}$$
We get: $I^{1}=-\dfrac{i}{2}; I^{3}=\dfrac{i}{3}; I^{5}=-\dfrac{23i}{90}; I^{7}=\dfrac{22i}{105}\cdots$
Upon adding these values we get:
$$\boxed{iK=-\dfrac{i}{2}+\dfrac{i}{3}-\dfrac{23i}{90}+\dfrac{22i}{105}-\cdots--(*)}$$
Now, we know the Taylor series expansion for $\arctan^2(x)=x^2 - \dfrac{2}{3}x^4 + \dfrac{23}{45}x^6 - \dfrac{44}{105}x^8 + \dfrac{563}{1575}x^{10} + \cdots$
Now this is where I have doubts regarding equating two infinite series:
By observation, we can see that (*) is equal to the negative half of the $\arctan^2(x)$ expansion at $x=1$
Therefore, $$\dfrac{\arctan^2(1)}{2}=-(*)=-K=\dfrac{\pi^2}{32}=\left(\dfrac{1}{1\cdot3}-\dfrac{1}{1\cdot5}+\dfrac{1}{1\cdot7}-\cdots-\dfrac{1}{3\cdot5}+\dfrac{1}{3\cdot7}-\cdots \right)$$
This result can be substituted in $(@)$, to get: $$\dfrac{\pi^2}{16}=\dfrac{1}{1^2}+\dfrac{1}{3^2}+\dfrac{1}{5^2}+\dfrac{1}{7^2}+\cdots+2K=\dfrac{1}{1^2}+\dfrac{1}{3^2}+\dfrac{1}{5^2}+\dfrac{1}{7^2}+\cdots-\dfrac{\pi^2}{16}$$
Which results in,$$\boxed{\dfrac{\pi^2}{8}=\dfrac{1}{1^2}+\dfrac{1}{3^2}+\dfrac{1}{5^2}+\dfrac{1}{7^2}+\dfrac{1}{9^2}+\dfrac{1}{11^2}+\dfrac{1}{13^2}+\dfrac{1}{15^2}+\cdots--(!)}$$
Now consider:$$L=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+\cdots=(!)+(L/4)$$
$$=>\dfrac{3L}{4}=(!)=\dfrac{\pi^2}{8}$$
Therefore,$$\boxed{L=\dfrac{\pi^2}{6}=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+\cdots}$$
I haven't checked for convergence of any of the derived series and I have misused several infinite sequences mentioned here. Also I do not know if the integration equations hold for imaginary values of $x$. I would greatly appreciate if anyone could rectify this proof :)