Presumably $d\ge2$. Let $k=rh-hr$. For any unit vectors $u\in\operatorname{range}(r)$ and $v\in\ker(r)=\operatorname{range}(r)^\perp$, we have
$$
\begin{aligned}
ku&=(rh-hr)u=rhu-hu=(r-1)hu,\\
kv&=(rh-hr)v=rhv.\\
\end{aligned}
$$
Therefore $\|ku\|_2,\|kv\|_2\le1$ and $ku\perp kv$. It follows that $\|ik\|_2\le1$. Moreover, since $ik$ is Hermitian, $\operatorname{tr}\big(q(ik)\big)$ and $\operatorname{tr}\big(p(ik)\big)$ are real numbers whose absolute values are at most $1$. Hence
$$
\operatorname{tr}(q[r,h])\operatorname{tr}(p[r,h])
=-\operatorname{tr}\big(q(ik)\big)\operatorname{tr}\big(p(ik)\big)\in[-1,1].\tag{$\ast$}
$$
E.g. when
$$
q=\pmatrix{\frac{1}{2}&-\frac{i}{2}\\ \frac{i}{2}&\frac{1}{2}\\ &&0_{(d-2)\times(d-2)}},
\quad r=\pmatrix{1&0\\ 0&0\\ &&0_{(d-2)\times(d-2)}},
\quad h=\pmatrix{0&1\\ 1&0\\ &&I_{d-2}},
$$
the lower bound $-1$ in $(\ast)$ is attained by $p=q$ and the upper bound $1$ is attained by $p=q^\top$.