Define the following Hankel Matrix
$H_A=\begin{pmatrix}
\text{trace}\big(A^1\big) & \text{trace}\big(A^2\big) & \text{trace}\big(A^3\big) & \cdots & \text{trace}\big(A^{n}\big) \\
\text{trace}\big(A^2\big) & \text{trace}\big(A^3\big)& \text{trace}\big(A^4\big) & \cdots &\text{trace}\big(A^{n+1}\big) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\text{trace}\big(A^{n-1}\big) & \text{trace}\big(A^{n}\big) &\text{trace}\big(A^{n+1}\big) & \cdots & \text{trace}\big(A^{2n-2}\big)\\
\text{trace}\big(A^{n}\big) & \text{trace}\big(A^{n+1}\big) &\text{trace}\big(A^{n+2}\big) & \cdots & \text{trace}\big(A^{2n-1}\big)
\end{pmatrix}$
What OP's condition says is that $\text{rank}(H_A)\leq 1$ since row $i$ is a scalar multiple of the row above for $2\leq i\leq n$ [and said scalar multiple is $\text{trace}\big(A\big)$ in all cases] and the rank of $H_A$ tells us the number of unique non-zero eigenvalues of $A$.
proof:
Let $r$ equal the number of distinct non-zero eigenvalues of $A$ (over a splitting field) and
$V:=\begin{bmatrix}
1 & \lambda_0 & \lambda_0^2 & \dots & \lambda_0^{n-1}\\
1 & \lambda_1 & \lambda_1^2 & \dots & \lambda_1^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \\
1 & \lambda_{r-1} & \lambda_{r-1}^{2} & \dots & \lambda_{r-1}^{n-1}
\end{bmatrix} =\bigg[\begin{array}{c|c|c|c}
\mathbf v_0 & \mathbf v_1 &\mathbf v_2 &\cdots & \mathbf v_{n-1}
\end{array}\bigg] $
where $V$ is (short and fat) Vandermonde with distinct rows hence surjective. And let $D$ be an $r\times r$ diagonal matrix with $d_{k,k}=m_k\cdot \lambda_k$ where $m_k$ is the respective algebraic multiplicty for eigenvalue $\lambda_k$. Then
Then $H_A=V^TD V $
because for $i, j\in \big\{0,1,\dots, n-1\big\}$ we have
$\mathbf e_i^T H_A \mathbf e_j = \text{trace}\big(A^{i+j+1}\big) =\sum_{k=0}^{r-1} m_k\cdot\lambda_k^{i+j+1} =\sum_{k=0}^{r-1} (\lambda_k^{i+1}\cdot m_k)\cdot \lambda_k^{j}=\big(\mathbf v_i^TD\big) \mathbf v_j = \mathbf e_i^T V^T D V \mathbf e_j $
Thus by surjectivity of $V$
$\text{rank}\big(H_A\big) = \text{rank}\big(V^TDV\big)=\text{rank}\big(D\big)= r$
Technically to finish, we have to flush out the case of $\text{rank}\big(H_A\big)=1$
i.e. for single distinct non-zero eigenvalue $\lambda_0$ with $k:=2$ we have
$m_0\cdot \lambda_0^2 +0 +0 +\cdots +0=\big(m_0\cdot \lambda_0+0 +0 +\cdots +0\big)^2$
$\implies m_0\in \big\{0,1\big\}\implies m_0= 1$
i.e. the sole non-zero eigenvalue has algebraic multiplicity of 1 as claimed.
remark on other fields:
The result in the proof holds over any field except we only know $\text{rank}\big(D\big)\leq r$ when working in prime characteristic $p$ because $m_k$ may be a positive integer that is zero modulo $p$, reducing the rank of $D$ to something $\lt r$. Thus for interpreting $\text{rank}\big(H_A\big)$ in positive characteristic we may insist that $p\gt n$. (This also ensures the 'technically to finish' works as intended since integer $m_0$ modulo $p$ is $\in \big\{0,1\big\}$ but $m_0\in \big\{1,2,\dots, n\big\}\subseteq \big\{1,2,\dots, p-1\big\}$ so $m_0=1$.)