Conjecture: $$\sum_{r=0}^{\infty}\left(\frac{x^{2r}\left(r+1\right)^{x}}{r!}\right)\overset{?}{=}{}\frac{\Gamma\left(x+2\right)}{\pi x^{2}}\int_{0}^{\pi}e^{x^{2}\cos\left(\sin t\right)e^{\cos t}}\cos\left(x^{2}e^{\cos t}\sin\left(\sin t\right)-\left(x+1\right)t\right)dt$$
I am not able to confirm this numerically. Could anyone help.
Let, $$I(x)=\int_{0}^{\pi}e^{x^{2}\cos\left(\sin t\right)e^{\cos t}}\cos\left(x^{2}e^{\cos t}\sin\left(\sin t\right)-\left(x+1\right)t\right)dt$$ $$\frac{I(n)(n+1)!}{\pi n^2e^{n^2}} \in \text{N}\ \forall \ n\in \text{N}$$ The Integral can be broken down as follows: $$I(x)=I_1(x)+I_2(x)$$ $$I_1(x)=\int_{0}^{\pi}e^{x^{2}\cos\left(\sin t\right)e^{\cos t}}\cos\left(x^{2}\sin\left(\sin t\right)e^{\cos t}\right)\cos\left(\left(x+1\right)t\right)dt$$ $$I_2(x)=\int_{0}^{\pi}e^{x^{2}\cos\left(\sin t\right)e^{\cos t}}\sin\left(x^{2}\sin\left(\sin t\right)e^{\cos t}\right)\sin\left(\left(x+1\right)t\right)dt$$
For small values $I_1(x)=I_2(x)$, I am not able to confirm the equality.
The Integral can be broken down more after expanding the Trigonometric Terms.
This is based on my previous question asked here. Summation $\sum_{n=0}^{\infty}\left(\frac{x^{2n}\left(n+1\right)^{x}\ }{n!}\right)$
If anyone could numerically verify whether the conjecture is true or not.
And is it possible to evaluate the Integral further?
It does seem to define the Sequence, but again I am using Desmos for numerical verification and it works for $n=1...3$, after that it cannot really compute clearly.
– Miracle Invoker Aug 19 '23 at 04:52