7

Series like $$ \sum_{n=1}^{\infty} \frac{1}{n^2\cosh(\pi n)^2},\sum_{n=1}^{\infty} \frac{\tanh\left ( \pi n \right ) }{n^3} $$ that used to be recognised as ones with no closed-forms, however, actually could be expressed by (generalized) hypergeometric series(being hyper-closed). We have \begin{aligned} &\sum_{n=1}^{\infty} \frac{1}{n^2\cosh(\pi n)^2} =S+\frac{3\pi^2}{4}-6\pi\ln(2),\\ &\sum_{n=1}^{\infty} \frac{\tanh(\pi n)}{n^3} =\pi S+\frac{5\pi^3}{12}-6\pi^2\ln(2)+4\pi G,\\ &\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2\sinh\left ( \frac\pi2(2n+1) \right )^2} =\frac14S +\frac{\pi^2}{48}-\frac{3\pi}2\ln(2)+2G,\\ &\sum_{n=0}^{\infty} \frac{\coth\left ( \frac\pi2(2n+1) \right ) }{ (2n+1)^3} =-\frac{\pi}{8}S -\frac{\pi^3}{96}+\frac{3\pi^2}4\ln(2)-\frac{\pi G}2, \end{aligned} where $S=\frac{7}{2}{}_6F_5\left ( \frac34,\frac34,1,1,1,\frac{15}8; \frac78,\frac54,\frac54,2,2;1 \right ) +\frac{\pi}{8}{}_5F_4\left ( 1,1,\frac32,\frac32,\frac32;2,2,2,2;1 \right )$ and $G=\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^2}$ denotes Catalan's constant. Mathematica codes for numerical verification: NSum[1/(n^2Cosh[Pi n]^2),{n,1,Infinity}] N[7/2HypergeometricPFQ[{3/4,3/4,1,1,1,15/8},{7/8,5/4,5/4,2,2},1]+Pi/8HypergeometricPFQ[{1,1,3/2,3/2,3/2},{2,2,2,2},1]+3Pi^2/4-6Pi Log[2]] NSum[Tanh[Pi n]/(n^3),{n,1,Infinity}] N[7Pi/2HypergeometricPFQ[{3/4,3/4,1,1,1,15/8},{7/8,5/4,5/4,2,2},1]+Pi^2/8HypergeometricPFQ[{1,1,3/2,3/2,3/2},{2,2,2,2},1]+5Pi^3/12-6Pi^2Log[2]+4Pi Catalan].


Question. Are these results known in literature? Could you provide any other ideas to prove the equalities? The original process is somewhat cumbersome, and I'll capture it in my answer(under this question) very soon.

1 Answers1

8

Our goal is to show $$\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2\sinh\left ( \frac\pi2(2n+1) \right )^2} =\frac14S +\frac{\pi^2}{48}-\frac{3\pi}2\ln(2)+2G.$$ The First Step.(as a hint) We consider $ \sum_{m\ge0,n\ge1}n^3e^{-\pi xn(2m+1)} =\frac{1}{16}\vartheta_2(q)^4\vartheta_3(q)^4. $ Therefore it's easy to show $$ \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2\sinh\left ( \frac\pi2(2n+1) \right )^2} =\frac{\pi^2}{4} \int_{1}^{\infty}(x-1)\vartheta_2(q)^4\vartheta_3(q)^4 \text{d}x, $$ which is solved to be the aforementioned hypergeometric series.


On the one hand, by integrating $f_1(z)=\frac{\pi \tan(\pi z)}{z^2\sinh(\pi z)^2},f_2(z)=\frac{\pi \cot(\pi z)\tanh(\pi z)}{z^3}$ and residue theorem, gives \begin{aligned} &\sum_{n=1}^{\infty} \left ( \frac2\pi \frac{\tanh(\pi n)}{n^3}-\frac{1}{n^2\cosh(\pi n)} \right ) =S+\frac{\pi^2}{12}-6\pi\ln(2)+8G,\\ &\sum_{n=0}^{\infty} \frac{\coth\left ( \frac\pi2(2n+1) \right ) }{(2n+1)^3} =\frac{\pi^3}{24} -\frac18\sum_{n=1}^{\infty} \frac{\tanh(\pi n)}{n^3}. \end{aligned} On the other hand, compute $ \sum_{(m,n)\in\mathbb{Z}^2}\frac{1}{\left [ \left ( m+\frac12 \right ) ^2+n^2\right ]^2 } =4\pi^2G $, from which we could find $$ \sum_{n=1}^{\infty} \left ( \frac2\pi \frac{\tanh(\pi n)}{n^3}-\frac{2}{n^2\cosh(\pi n)} \right ) =8G-\frac{2\pi^2}3.\square $$


Here are some relative results.
Entry 1. \begin{aligned} &\sum_{n=1}^{\infty} \frac{\coth(\pi n)}{n^3} =\frac{7\pi^3}{180},\\ &\sum_{n=1}^{\infty} \frac{1}{n^3\left ( e^{2\pi n}-1 \right ) } =\frac{7\pi^3}{360}-\frac{1}{2}\zeta(3),\\ &\sum_{n=1}^{\infty} \frac{1}{n^2\sinh(\pi n)^2} =\frac23G-\frac{11\pi^2}{180},\\ &\sum_{n=1}^{\infty} \frac{\coth(\pi n)}{n\sinh(\pi n)^2}=\frac\pi{30}-\frac{G}{3\pi}. \end{aligned} Entry 2. \begin{aligned} &\sum_{n=1}^{\infty} \frac{\tanh(\pi n)}{n^3} =\pi S+\frac{5\pi^3}{12}-6\pi^2\ln(2)+4\pi G,\\ &\sum_{n=1}^{\infty} \frac{1}{n^3\left ( e^{2\pi n}+1 \right ) } =\frac{1}{2}\zeta(3)-\frac{\pi}{2} S -\frac{5\pi^3}{24}+3\pi^2\ln(2)-2\pi G,\\ &\sum_{n=1}^{\infty} \frac{1}{n^2\cosh(\pi n)^2} =S+\frac{3\pi^2}{4}-6\pi\ln(2),\\ &\sum_{n=1}^{\infty} \frac{\tanh(\pi n)}{n\cosh(\pi n)^2}=-\frac\pi2+\frac32\ln(2)+\frac{2G}\pi-\frac1{32}\,_5F_4\left ( 1,1,\frac32,\frac32,\frac32;2,2,2,2;1 \right ), \end{aligned} where $S=\frac{7}{2}{}_6F_5\left ( \frac34,\frac34,1,1,1,\frac{15}8; \frac78,\frac54,\frac54,2,2;1 \right ) +\frac{\pi}{8}{}_5F_4\left ( 1,1,\frac32,\frac32,\frac32;2,2,2,2;1 \right )$.
Entry 3. \begin{aligned} &\sum_{n=0}^{\infty} \frac{\tanh\left ( \frac\pi2(2n+1) \right ) }{(2n+1)^3} =\frac{\pi^3}{32} ,\\ &\sum_{n=0}^{\infty}\frac{1}{(2n+1)^3\left ( e^{\pi(2n+1)}+1 \right ) } =\frac7{16}\zeta(3)-\frac{\pi^3}{64} ,\\ &\sum_{n=0}^{\infty} \frac{1 } {(2n+1)^2\cosh\left ( \frac\pi2(2n+1) \right )^2 } =\frac{\pi^2}{16}-\frac{G}{2},\\ &\sum_{n=0}^{\infty} \frac{\tanh\left ( \frac\pi2(2n+1) \right ) } {(2n+1)\cosh\left ( \frac\pi2(2n+1) \right )^2 } =\frac{G}{2\pi}. \end{aligned} Entry 4. \begin{aligned} &\sum_{n=0}^{\infty} \frac{\coth\left ( \frac\pi2(2n+1) \right ) }{(2n+1)^3} =-\frac{\pi}{8}S -\frac{\pi^3}{96}+\frac{3\pi^2}4\ln(2)-\frac{\pi G}2,\\ &\sum_{n=0}^{\infty}\frac{1}{(2n+1)^3\left ( e^{\pi(2n+1)}-1 \right ) } =-\frac7{16}\zeta(3)-\frac{\pi}{16}S -\frac{\pi^3}{192}+\frac{3\pi^2}8\ln(2)-\frac{\pi G}4,\\ &\sum_{n=0}^{\infty} \frac{1 } {(2n+1)^2\sinh\left ( \frac\pi2(2n+1) \right )^2 } =\frac14S +\frac{\pi^2}{48}-\frac{3\pi}2\ln(2)+2G,\\ &\sum_{n=0}^{\infty} \frac{\coth\left ( \frac\pi2(2n+1) \right ) } {(2n+1)\sinh\left ( \frac\pi2(2n+1) \right )^2 } =\frac34\ln(2)-\frac{G}\pi-\frac1{64}\,_5F_4\left ( 1,1,\frac32,\frac32,\frac32;2,2,2,2;1 \right ). \end{aligned} Entry 5. $$ \displaystyle \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^3\cosh\left ( \frac\pi2 (2n+1) \right ) } =\frac{\pi^3}{32}+\frac{\pi^2}{8}-\frac{\Gamma\left ( \frac14 \right )^4 }{16\pi} +\frac{\pi^2}{8}\sum_{n=0}^{\infty} \frac{\left ( \frac12 \right )_n^3 }{(1)_n^3} \frac{1}{2n+1}+\frac{\Gamma\left ( \frac14 \right )^4}{64}\sum_{n=0}^{\infty} \frac{\left ( \frac12 \right )_n^2}{(1)_n^2} \frac{1}{(4n+3)^2}, $$ $$ \displaystyle\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)\sinh\left ( \frac\pi2(2n+1) \right )^2 } =\frac{1}{8}\sum_{n=1}^{\infty}\frac{(-1)^{n-1}\Gamma\left ( \frac{n}2 \right ) \Gamma\left ( \frac{n+1}{2} \right ) }{\Gamma\left ( \frac{n}2+\frac34 \right )^2 }. $$ Entry 6. \begin{aligned} &\sum_{n=0}^{\infty}\frac{1}{2n+1} \frac{\sinh\left ( \pi\left ( n+\frac12 \right ) \frac{K^\prime}{K} \right ) }{ \cosh\left ( 2\pi\left ( n+\frac12 \right ) \frac{K^\prime}{K} \right )} =\frac{1}{2}\operatorname{artanh} \left ( \sqrt{\frac{1-\sqrt{1-k^2} }{2} } \right ),\\ &\sum_{n=0}^{\infty}\frac{(-1)^n}{2n+1} \frac{\cosh\left ( \pi\left ( n+\frac12 \right ) \frac{K^\prime}{K} \right ) }{ \cosh\left ( 2\pi\left ( n+\frac12 \right ) \frac{K^\prime}{K} \right )} =\frac{1}{2}\operatorname{arctan} \left ( \sqrt{\frac{1/\sqrt{1-k^2}-1 }{2} } \right ),\\ &\sum_{m_i\in\mathbb{Z}} \frac{1}{\cosh\left ( \pi\sqrt{m_1^2+m_2^2+m_3^2} \right ) } =\frac{\Gamma\left ( \frac14 \right )^4 }{2\sqrt{2}\pi^3 },\\ &\sum_{m,n\ge0} \frac{(-1)^m}{\sqrt{(2m+1)(2n+1)} \sinh\left ( \frac\pi2\sqrt{(2m+1)(2n+1)} \right ) } =\frac12,\\ &{}_9F_8\left ( \left \{ \frac12 \right \}_8,\frac54 ;\frac14,\left \{ 1\right \} _7;1 \right ) =\frac{1024}{3\pi} \sum_{m_i\ge0}\frac{(-1)^{m_1+m_2+m_3}\left ( m_1+\frac12 \right )(m_2+\frac12)(m_3+\frac12) }{ \cosh\left ( \pi\sqrt{\left ( m_1+\frac12 \right )^2 +\left ( m_2+\frac12 \right )^2+\left ( m_3+\frac12 \right )^2 } \right ) }. \end{aligned} Entry 7. \begin{aligned} &\sum_{n = 1}^{\infty} \frac{1}{n^3\sinh(\pi n)} = -\frac{\pi}{8}S-\frac{2\pi^3}{45}+\frac{3\pi^2}{4}\ln(2) -\frac{\pi G}{2},\\ &\sum_{n=1}^{\infty} \frac{\coth(\pi n)}{n^2\sinh(\pi n)} =\frac{1}{8}S+\frac{23\pi^2}{360}-\frac{3\pi}{4}\ln(2) +\frac{5 G}{12},\\ &\sum_{n=1}^{\infty}\frac{(-1)^n}{n^3\sinh(\pi n)} =-\frac{\pi^3}{360},\\ &\sum_{n=1}^{\infty} \frac{(-1)^n\coth(\pi n)}{n^2\sinh(\pi n)} =\frac{\pi^2}{45}-\frac{G}{3},\\ &\sum_{n=1}^{\infty} \frac{(-1)^n}{n\sinh(\pi n)^3} =-\frac{17\pi}{240}+\frac{G}{6\pi}+\frac{1}{4}\ln(2). \end{aligned} Entry 8. 3 remarkable integrals: $$ \int_{0}^{1} \frac{K^\prime{}^2}{\sqrt{k}K }\text{d}k =\int_{0}^{1} \frac{K\left ( \sqrt{1-k^2} \right ) ^2}{\sqrt{k}K(k) }\text{d}k =3\pi^2\ln(2)-\frac{\pi^2}{16} \,_5F_4\left ( 1,1,\frac32,\frac32,\frac32;2,2,2,2;1 \right ), $$ $$ \int_{0}^{1} \frac{K^\prime{}^2}{K}\frac1{\sqrt{1-k^2} }\text{d}k =\frac{3\pi^2}4\ln(2)-\frac{\pi^2}{64} \,_5F_4\left ( 1,1,\frac32,\frac32,\frac32;2,2,2,2;1 \right ), $$ $$\int_{0}^{1} \frac{K^\prime}{K}\frac{\text{d}k}{\sqrt{k}(1-k^2)^{3/4}} =\frac{5\pi}{2}\ln(2)-\frac{\pi}{16} \,_4F_3\left ( 1,1,\frac32,\frac32;2,2,2;\frac12 \right ),$$ $$ \int_{0}^{1} \frac{K^\prime}{K} \frac{\text{d}k}{(1-k^2)^{3/4}} =\frac{\pi}{\sqrt{2} }\,_3F_2\left ( \frac12,\frac12,\frac12;1,\frac32;\frac12 \right ), $$

$$ \int_{0}^{1} \frac{K^\prime}{K} \frac{\text{d}k}{\sqrt{k}\sqrt{1-k^2}} =\sqrt{2}\pi\,_3F_2\left ( \frac12,\frac12,\frac12;1,\frac32;\frac12 \right ), $$and a hypergeometric identity: $$ \sum_{n=0}^{\infty} \frac{\left ( \frac12 \right )_n^5 }{(1)_n^5} (4n+1) =\frac{2\sqrt{2}\,\Gamma\left ( \frac14 \right )^2 }{\pi^{5/2}} \,_4F_3\left ( \frac14,\frac14,\frac14,\frac14;\frac12,\frac12,1;1 \right ) -\frac{2}{\pi}\,_4F_3\left ( \frac14,\frac12,\frac12,\frac12;\frac34,1,1;1 \right ) $$ with a generalization, for any $\Re(s)>0$, $$ \,_7F_6\left ( \left \{ \frac12 \right \}_5,\frac{5}{4},1-s; s+\frac12,\frac14,\left \{ 1 \right \}_4;1 \right ) =4^{1-s} \frac{\Gamma\left ( \frac14 \right )^2\Gamma(2s) }{\pi^2\,\Gamma\left ( s+\frac14 \right )^2 } \,_4F_3 \left ( \frac14,\frac14,s,s;s+\frac14,s+\frac14,1;1 \right ) -\frac{2}{\pi}\,_4F_3\left ( \left \{ \frac12 \right \}_3,s;s+\frac12,1,1;1 \right ). $$ Entry 9. An integral derived by a hyperbolic series(with a nasty looking): $$ \int_{0}^{\frac{\sqrt{6}-\sqrt{2} }{4} } \frac{(1-2k^2)(1-136k^2+136k^4)}{\sqrt{1-k^2} } \left ( K^\prime-\sqrt{3}K \right ) ^6\text{d}k =\frac{\pi^7}{16}. $$

Entry 10. We involve some hypergeometric cases. $$ \sum_{n=0}^{\infty} \frac{\tanh\left ( \pi\left ( n+\frac12 \right ) \frac{K^\prime}{K} \right ) }{(2n+1)\cosh\left ( \pi\left ( n+\frac12 \right ) \frac{K^\prime}{K}\right ) } =\frac{k}2\,_3F_2\left ( \frac12,\frac12,\frac12;1,\frac32;k^2 \right ) ,$$

$$ \sum_{n=1}^{\infty} \frac{(-1)^n\tanh(\pi n)}{n\cosh(\pi n)} =\sqrt{2}\,_3F_2\left ( \frac12,\frac12,\frac12;1,\frac32;1 \right ) -\frac\pi2. $$