Note: This is an alternative-proof question and thus is not a duplicate.
The Question:
Show, using group presentations, that $$\Bbb Z_m\times\Bbb Z_n\cong\Bbb Z_{{\rm lcm}(m,n)}\times \Bbb Z_{\gcd(m,n)}.$$
Motivation:
I was trying to answer this question in particular . . .
$\Bbb Z_m \times \Bbb Z_n$ isomorphic to $\Bbb Z_{\operatorname{lcm}(m,n)}\times \Bbb Z_{\gcd(m,n)}$
. . . using only Tietze transformations. (Why not, eh?) But I got stuck.
Thoughts:
Following the initial setup in the question, I began with
By this standard result, we have
$$\begin{align} \Bbb Z_m\times \Bbb Z_n &\cong\langle z,w\mid z^m, w^n, zw=wz\rangle\\ &\cong \langle x,y,z,w\mid x=zw, y=z^{m/d}w^{n/d}, z^m, w^n, zw=wz\rangle\\ &\cong\langle x,y,w\mid y=(xw^{-1})^{m/d}w^{n/d}, (xw^{-1})^m, w^n, (xw^{-1})w=w(xw^{-1})\rangle\\ &\cong\langle x,y,w\mid y=(xw^{-1})^{m/d}w^{n/d}, (xw^{-1})^m, w^n, xw=wx\rangle\\ &\cong\langle x,y,w\mid y=x^{m/d}w^{(n-m)/d}, x^m=w^m, w^n, xw=wx, xy=yx, yw=wy\rangle\\ &\cong\langle x,y,w\mid w^{{(n-m)/d}}=x^{-m/d}y, x^m=w^m, w^{n}, xw=wx, xy=yx, yw=wy\rangle\\ &\cong\langle x,y,w\mid w^{n-m}=x^{-m}y^d, w^{{(n-m)/d}}=x^{-m/d}y, x^m=w^m, w^{n}, xw=wx, xy=yx, yw=wy\rangle\\ &\cong\langle x,y,w\mid w^n=y^d, w^{{(n-m)/d}}=x^{-m/d}y, x^m=w^m, w^{n}, xw=wx, xy=yx, yw=wy\rangle\\ &\cong\langle x,y,w\mid w^n=y^d, w^mw^{n/d}=w^{m/d}x^{-m/d}y, x^m=w^m, w^{n}, xw=wx, xy=yx, yw=wy\rangle \end{align}$$
That's about it. How ugly!
Surely there's a way to manipulate either this answer to the linked question (in the Motivation section) . . .
Fix $u,v\in\Bbb Z$ with $un+vm=d$ (Bezout). The map $$\Bbb Z_{\operatorname{lcm}(n,m)}\times\Bbb Z_{\gcd(n,m)} \to\Bbb Z_m\times\Bbb Z_n$$ $$ (a+\operatorname{lcm}(n,m)\Bbb Z,b+\gcd(n,m)\Bbb Z)\mapsto(ua+\tfrac mdb+m\Bbb Z,va-\tfrac ndb+n\Bbb Z)$$ is well-defined(!) and clearly a group homomorphism. For the element on the left to be in the kernel, $ua+\tfrac mdb$ must be a multiple of $m$ and $va-\tfrac ndb$ a multiple of $n$. But then $$\frac nd\left(ua+\frac mdb\right)+\frac md\left(va-\frac ndb\right) =\frac{nu+vm}{d}a=a$$ is a multiple of $\frac{nm}d=\operatorname{lcm}(n,m)$, i.e., we may as well assume that $a=0$. Then $\frac mdb$ must be a multiple of $m$, i.e., $b$ a multiple of $d$, i.e. $b\equiv 0$. We conclude that the kernel is trivial and our homomorphism injective. As both groups are finite of same order, the homomoprhism must be an isomorphism.
. . . or this answer to a slightly different question:
Write $m=dm', n=dn', d=mu+nv$. Then $l=m'n=mn'$.
These row and columns operations prove that $\mathbb{Z}_m\oplus \mathbb{Z}_n \cong \mathbb{Z}_d\oplus \mathbb{Z}_l$: $$ A=\pmatrix{ m & 0 \\ 0 & n} \to \pmatrix{ m & mu \\ 0 & n} \to \pmatrix{ m & mu+nv \\ 0 & n} = \pmatrix{ m & d \\ 0 & n}\\ \to \pmatrix{ 0 & d \\ -m'n & n} = \pmatrix{ 0 & d \\ -l & n} \to \pmatrix{ 0 & d \\ -l & 0} \to \pmatrix{ d & 0 \\ 0 & l}=B $$
An explicit isomorphism can be written by collecting the row and columns operations into two matrices $P,Q$ so that $B=PAQ$: $$ P = \pmatrix{ 1 & 0 \\ -n' & 1} \pmatrix{ 1 & v \\ 0 & 1} =\pmatrix{1 & v \\ -n' & 1 - v n'} \\ Q = \pmatrix{ 1 & u \\ 0 & 1} \pmatrix{ 1 & 0 \\ -m' & 1} \pmatrix{ 0 & -1 \\ 1 & 0} = \pmatrix{u & -1 + u m' \\ 1 & m'} $$
If $e_1, e_2$ is the canonical basis for $\mathbb Z^2$, then the basis $f_1, f_2$ given by $F=Q^{-1}E$ is such that this diagram commutes: $$ \matrix { \mathbb Z^2 , \{ e_1, e_2\} & \to & \mathbb Z^2, \{ f_1, f_2\} \\ \downarrow & & \downarrow \\ \mathbb{Z}_m\oplus \mathbb{Z}_n & \to & \mathbb{Z}_d\oplus \mathbb{Z}_l } $$
This isomorphism does not use prime factorizations nor explicitly the Chinese Remainder Theorem.
Please help :)