Write $m=dm', n=dn', d=mu+nv$. Then $l=m'n=mn'$.
These row and columns operations prove that $\mathbb{Z}_m\oplus \mathbb{Z}_n \cong \mathbb{Z}_d\oplus \mathbb{Z}_l$:
$$
A=\pmatrix{ m & 0 \\ 0 & n}
\to \pmatrix{ m & mu \\ 0 & n}
\to \pmatrix{ m & mu+nv \\ 0 & n}
= \pmatrix{ m & d \\ 0 & n}\\
\to \pmatrix{ 0 & d \\ -m'n & n}
= \pmatrix{ 0 & d \\ -l & n}
\to \pmatrix{ 0 & d \\ -l & 0}
\to \pmatrix{ d & 0 \\ 0 & l}=B
$$
An explicit isomorphism can be written by collecting the row and columns operations into two matrices $P,Q$ so that $B=PAQ$:
$$
P =
\pmatrix{ 1 & 0 \\ -n' & 1}
\pmatrix{ 1 & v \\ 0 & 1}
=\pmatrix{1 & v \\ -n' & 1 - v n'}
\\
Q =
\pmatrix{ 1 & u \\ 0 & 1}
\pmatrix{ 1 & 0 \\ -m' & 1}
\pmatrix{ 0 & -1 \\ 1 & 0}
= \pmatrix{u & -1 + u m' \\ 1 & m'}
$$
If $e_1, e_2$ is the canonical basis for $\mathbb Z^2$, then the basis $f_1, f_2$ given by $F=Q^{-1}E$ is such that this diagram commutes:
$$
\matrix { \mathbb Z^2 , \{ e_1, e_2\} & \to & \mathbb Z^2, \{ f_1, f_2\} \\
\downarrow & & \downarrow \\
\mathbb{Z}_m\oplus \mathbb{Z}_n & \to & \mathbb{Z}_d\oplus \mathbb{Z}_l
}
$$
This isomorphism does not use prime factorizations nor explicitly the Chinese Remainder Theorem.