I'd like to solve the integral
$$I := \int_{0}^{\pi/2} \ln(\sec^{2}(x) + \tan^{4}(x)) \mathrm{d}x$$
using the method of differentiating under the integral sign. So, first substituting $\tan x=u$, we get $\sec^2x \mathrm{d}x = \mathrm{d}u$, meaning $\mathrm{d}x = \frac{\mathrm{d}u}{\sec^2(\tan^{-1} u)} = \frac{\mathrm{d}u}{1+u^2}$. So, we have
$$I = \int_{0}^{\infty} \ln(1+u^{2} + u^{4}) \frac{\mathrm{d}u}{1+u^2}.$$
Let's define $I(t)$ as
$$I(t) := \int_{0}^{\infty} \ln(1+t[u^{2} + u^{4}]) \frac{\mathrm{d}u}{1+u^2},$$
where $I(t=0) = 0$. Then, differentiating w.r.t. $t$ yields
$$I'(t) = \int_{0}^{\infty} \frac{[u^{2} + u^{4}]\mathrm{d}u}{(1+t[u^{2} + u^{4}])(1+u^2)} = \int_{0}^{\infty} \frac{u^{2}\mathrm{d}u}{1+tu^{2}(1 + u^{2})}.$$
Let $x = u^2$. Then, $\mathrm{d}u = \frac{\mathrm{d}x}{2\sqrt{x}}$, leading to
$$I'(t) = \frac{1}{2t}\int_{0}^{\infty} \frac{\sqrt{x}\mathrm{d}x}{(x+\frac{1}{2})^2 + (\frac{1}{t}-\frac{1}{4})}.$$
Does this integral even converge? If so, how can one evaluate it? If otherwise, what have I done wrong here?