I am trying to evaluate the combinatorics term of (n choose k) where k is not constant but $k=o\left(\sqrt{n}\right)$ (as in, small-o and not big-O). Following the suggestion from here n-choose-k-theta
I have reached out to :
$$\frac{1}{k!}\left(n\left(n-1\right)\left(n-2\right)...\left(n-k+1\right)\right)=O\left(\frac{1}{k!}n^{k}\right)$$
And:
$$\frac{1}{k!}\left(n\left(n-1\right)\left(n-2\right)...\left(n-k+1\right)\right)=\frac{1}{k!}n^{k}\left(1\cdot\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)...\left(1-\frac{k}{n}\right)\right)=\frac{1}{k!}n^{k}\Omega\left(\left(1-\frac{k}{n}\right)^{k}\right)$$
But now I am stuck to show that for $k=o\left(\sqrt{n}\right)$ : $$\Omega\left(\left(1-\frac{k}{n}\right)^{k}\right)=\Omega\left(1\right)$$
Which doesn't seem very natural to me at least.