One way is by applying Lagrange reversion and letting $x=\frac1w$:
$$\ln(x)=\frac{x+1}{2x+1}\iff ew=\sqrt[w+2]e\implies w=\sum_{n=1}^\infty\frac{e^{-n}}{n!}\left.\frac{d^{n-1}}{dw^{n-1}}e^\frac nw\right|_2$$
If we wanted to expand $\frac1x$ as a series only, it would diverge. Maclaurin series uses factorial power $n^{(m)}$.
$$\frac{d^{n-1}}{dw^{n-1}}e^\frac nw =\sum_{m=0}^\infty\frac{n^m (-m)^{(n-1)}}{y^{m+n-1}m!}$$
which is just a confluent hypergeometric $\,_1\text F_1(a;b;x)$ or Laguerre $\operatorname L_n^r(x)$ function. Expanding $\operatorname L_n^1(x)$’s integral representation gives us an integral solution:
$$\bbox[4px,border:4px #90EE90 double]{x=\frac1{\frac1e-\sum_\limits{n=1}^\infty(-2e)^{-n}\,_1\text F_1\left(n;2;\frac n2\right)}=\frac1{\frac1{\sqrt e}-\frac1{4\pi}\int_0^{2\pi} e^{\frac{ e^{it}}2+it-\frac12}\ln\left(\frac12(e^{it}+1)e^{\frac{e^{it}}2-it-\frac12}+1\right)dt}}$$
Typing in RealDigits[1/(1/E-NSum[(-2E)^(-n) Hypergeometric1F1[n,2,n/2],{n,1,7000}])]
into Mathematica matches the many first true digits:

while the, rounded, integral is shown here
Another way uses the Ramanujan master theorem, which would give the same series expansion or Mellin inversion which would possibly give another integral representation with a similar integrand.