I'm stuck with this proof, this is what I did:
$n=2: \bigg(1+\cfrac{1}{2}\bigg)^{2} < 1 + 1 + \cfrac{1}{2}$
where verifies: $\cfrac{9}{4} < \cfrac{5}{2}$
Now with the hypothesis: $\bigg(1+\cfrac{1}{k}\bigg)^{k} < \sum_{i=0}^k \cfrac{1}{i!}$
then: $\bigg(1+\cfrac{1}{k+1}\bigg)^{k+1} < \sum_{i=0}^{k+1} \cfrac{1}{i!}$
$\bigg(1+\cfrac{1}{k+1}\bigg)^{k+1}=\bigg(1+\cfrac{1}{k+1}\bigg)^{k}\bigg(1+\cfrac{1}{k+1}\bigg)<\bigg(1+\cfrac{1}{k}\bigg)^{k}\bigg(1+\cfrac{1}{k+1}\bigg)<\sum_{i=0}^{k} \cfrac{1}{i!}\bigg(1+\cfrac{1}{k+1}\bigg)=\sum_{i=0}^{k} \cfrac{1}{i!} +\cfrac{1}{k+1}\sum_{i=0}^{k} \cfrac{1}{i!}$
and i don't know how to relate the second element and get $\cfrac{1}{(k+1)!}$. Should I use Newton binomial?
Thanks in advance.