The proof is based on the fact that the determinant of a square matrix can be computed by expansion about the first row. It is, however, surprisingly easier, compared with the one that is based on the definition (expansion about the first column).
Let the proposition $P(n)$ be as follows:
For any positive integer $j$ less than or equal to $n$, for any $n \times 1$ matrices $a_1$, $\dots$, $a_{j-1}$, $a_{j+1}$, $\dots$, $a_n$, for any $n \times 1$ matrices $x$, $y$ and for any numbers $s$, $t$,
$$ \begin{aligned}
& \det
{[a_1, \dots, a_{j-1}, \overset{\text{column}\,j}{sx + ty},
a_{j+1}, \dots, a_n]}
\\
= {} &
s
\det {[a_1, \dots, a_{j-1}, x, a_{j+1}, \dots, a_n]}
+
t
\det {[a_1, \dots, a_{j-1}, y, a_{j+1}, \dots, a_n]}.
\end{aligned} $$
It will be proved that $P(n)$ is true for $n = 1$, $2$, $3$, $\dots$ by mathematical induction.
$P(1)$ is true, which is left as an exercise.
Suppose that $P(n-1)$ is true. It will be proved that $P(n)$ is true under the hypothesis.
Define
$$
\begin{aligned}
& A = [a_1, \dots, a_{j-1}, x, a_{j+1}, \dots, a_n], \\
& B = [a_1, \dots, a_{j-1}, y, a_{j+1}, \dots, a_n], \\
& C = [a_1, \dots, a_{j-1}, sx + ty, a_{j+1}, \dots, a_n].
\end{aligned}
$$
If $k \neq j$, then $[A]_{i,k} = [B]_{i,k} = [C]_{i,k}$. Hence $A(i|j) = B(i|j) = C(i|j)$. Note that $[C]_{i,j} = s[A]_{i,j} + t[B]_{i,j}$.
Let $k$ be a positive integer less than or equal to $n$, and unequal to $j$. Let $\ell$ be $j$ if $k < j$, or $j-1$ if $k > j$. Suppose that column $\ell$ of $A(1|k)$, that of $B(1|k)$ and that of $C(1|k)$ are $p$, $q$, $r$, respectively. Then $r = sp + tq$. By the hypothesis, one has
$$
\det {(C(1|k))} = s \det {(A(1|k))} + t \det {(B(1|k))}.
$$
Note that
$$
[C]_{1,j} = s[A]_{1,j} + t[B]_{1,j}.
$$
Hence
$$
\begin{aligned}
& \det {(C)}
\\
= {} &
\sum_{k = 1}^{n}
{(-1)^{1 + k} [C]_{1,k} \det {(C(1|k))}}
\\
= {} &
(-1)^{1 + j} [C]_{1,j} \det {(C(1|j))}
+
\sum_{\substack{1 \leq k \leq n \\k \neq j}}
{(-1)^{1 + k} [C]_{1,k} \det {(C(1|k))}}
\\
= {} &
\hphantom{{} + {}}
(-1)^{1 + j} (s[A]_{1,j} + t[B]_{1,j}) \det {(C(1|j))}
\\
&
+
\sum_{\substack{1 \leq k \leq n \\k \neq j}}
{(-1)^{1 + k} [C]_{1,k}
(s \det {(A(1|k))} + t \det {(B(1|k))})}
\\
= {} &
\hphantom{{} + {}}
s (-1)^{1 + j} [A]_{1,j} \det {(C(1|j))}
+ t (-1)^{1 + j} [B]_{1,j} \det {(C(1|j))}
\\
&
+ s \sum_{\substack{1 \leq k \leq n \\k \neq j}}
{(-1)^{1 + k} [C]_{1,k} \det {(A(1|k))}}
\\
&
+ t \sum_{\substack{1 \leq k \leq n \\k \neq j}}
{(-1)^{1 + k} [C]_{1,k} \det {(B(1|k))}}
\\
= {} &
\hphantom{{} + {}}
s (-1)^{1 + j} [A]_{1,j} \det {(A(1|j))}
+ t (-1)^{1 + j} [B]_{1,j} \det {(B(1|j))}
\\
&
+ s \sum_{\substack{1 \leq k \leq n \\k \neq j}}
{(-1)^{1 + k} [A]_{1,k} \det {(A(1|k))}}
\\
&
+ t \sum_{\substack{1 \leq k \leq n \\k \neq j}}
{(-1)^{1 + k} [B]_{1,k} \det {(B(1|k))}}
\\
= {} &
\hphantom{{} + {}}
s (-1)^{1 + j} [A]_{1,j} \det {(A(1|j))}
+ s \sum_{\substack{1 \leq k \leq n \\k \neq j}}
{(-1)^{1 + k} [A]_{1,k} \det {(A(1|k))}}
\\
&
+ t (-1)^{1 + j} [B]_{1,j} \det {(B(1|j))}
+ t \sum_{\substack{1 \leq k \leq n \\k \neq j}}
{(-1)^{1 + k} [B]_{1,k} \det {(B(1|k))}}
\\
= {} &
s \sum_{k = 1}^{n}
{(-1)^{1 + k} [A]_{1,k} \det {(A(1|k))}}
+ t \sum_{k = 1}^{n}
{(-1)^{1 + k} [B]_{1,k} \det {(B(1|k))}}
\\
= {} & s \det {(A)} + t \det {(B)}.
\end{aligned}
$$
Hence by mathematical induction, $P(n)$ is true for $n = 1$, $2$, $3$, $\dots$.