Consider
$$
{n^n (n+2)^{n+1} \over n^n (n+1)^{n+1}}
\geq
{(n+1)^{2n+1} \over n^n (n+1)^{n+1}},
$$
which is
$$
\left( 1 + \frac{1}{n+1} \right)^{n+1} \geq \left( 1 + \frac{1}{n} \right)^{n}.
$$
Put
$$
a_m = \left( 1 + \frac{1}{m} \right)^m.
$$
By the binomial theorem,
$$
\begin{aligned}
a_m
= {} & 1 + \frac{m}{m} + \frac{m(m-1)}{2!\, m^2} + \frac{m(m-1)(m-2)}{3!\, m^3} + \dots + \frac{m(m-1)(m-2) \cdots (m-(m-1))}{m!\, m^m} \\
= {} & 1 + 1 + \frac{1}{2!} \left( 1 - \frac{1}{m} \right)
+ \frac{1}{3!} \left( 1 - \frac{1}{m} \right) \left( 1 - \frac{2}{m} \right)
+ \dots
+ \frac{1}{m!} \left( 1 - \frac{1}{m} \right) \left( 1 - \frac{2}{m} \right) \cdots \left( 1 - \frac{m-1}{m} \right),
\end{aligned}
$$
which is not greater than
$$
1 + 1 + \frac{1}{2!} \left( 1 - \frac{1}{m+1} \right)
+ \frac{1}{3!} \left( 1 - \frac{1}{m+1} \right) \left( 1 - \frac{2}{m+1} \right)
+ \dots
+ \frac{1}{m!} \left( 1 - \frac{1}{m+1} \right) \left( 1 - \frac{2}{m+1} \right) \cdots \left( 1 - \frac{m-1}{m+1} \right),
$$
which is in turn not greater than
$$
1 + 1 + \frac{1}{2!} \left( 1 - \frac{1}{m+1} \right)
+ \frac{1}{3!} \left( 1 - \frac{1}{m+1} \right) \left( 1 - \frac{2}{m+1} \right)
+ \dots
+ \frac{1}{m!} \left( 1 - \frac{1}{m+1} \right) \left( 1 - \frac{2}{m+1} \right) \cdots \left( 1 - \frac{m-1}{m+1} \right)
+ \frac{1}{(m+1)!} \left( 1 - \frac{1}{m+1} \right) \left( 1 - \frac{2}{m+1} \right) \cdots \left( 1 - \frac{m-1}{m+1} \right) \left( 1 - \frac{m}{m+1} \right),
$$
which is just $a_{m+1}$.