This question is related to another question where we asked for evaluating a certain multi-dimensional integral. It turns out that that integral, from the question above, can be reduced to an action of a multivariate differential operator on a certain multivariate function. Now that very action can be further simplified by an appropriate change of variables which then leads to a quantity that we will be evaluating below. After this motivation let me formulate my question.
Let $n \ge 1$ be an integer and let $\vec{a}:= \left( a_i \right)_{i=1}^n \in {\mathbb N}_+^n$ and let $(y_i)_{i=1}^n$ by some symbolic parameters. Define $\vec{x}:= ( x_i)_{i=1}^n$ where $x_i := y_1+\cdots+y_i$ for $i=1,\cdots,n$. We define an action of a multivariate differential operator on a product of reciprocals of the quantities $x_{\cdot}$. We have:
\begin{eqnarray} {\mathfrak A}^{(\vec{a})}(\vec{x}) &:=& \prod\limits_{i=1}^n \left( \sum\limits_{j=i}^n \frac{\partial}{\partial x_j} \right)^{a_i} \cdot \prod\limits_{i=1}^n \frac{1}{x_i} \\ &=& \frac{\partial^{a_1}}{\partial y_1^{a_1}} \cdot \frac{\partial^{a_2}}{\partial y_2^{a_2}} \cdot \cdots \frac{\partial^{a_n}}{\partial y_n^{a_n}} \cdot \prod\limits_{i=1}^n \frac{1}{(y_1+\cdots+ y_i)} \tag{1} \end{eqnarray}
Now, by using iterated partial fraction decomposition in the variables $y_i$ starting from $i=n$ all the way down to $i=1$ we have obtained the following functional form of the quantity in $(1)$. We have:
\begin{eqnarray} &&\left.{\mathfrak A}^{(\vec{a})}(\vec{x}) = \right. \\ && \left. % {\mathfrak T}^{(0)}(\vec{a}) + \right. \\ % % && \left. \sum\limits_{i=0}^{n-2} {\mathfrak T}^{(1)}_i(\vec{y}) + \right. \\ && \left. \underbrace{\cdots}_{\mbox{additional $(2^{n-1}-2-2(n-1))$ terms}} + \right. \\ && \left. \sum\limits_{i=1}^{n-1} {\mathfrak T}^{(n-3)}_i(\vec{y}) + \right. \\ &&\left. {\mathfrak T}^{(n-2)}(\vec{a}) \right. \tag{2} \end{eqnarray}
where
\begin{eqnarray} {\mathfrak T}^{(0)}(\vec{a}) &:=& \left. % a_n! \cdot \sum\limits_{ \begin{array}{lll} \left( l_j \right. &=& 0, \cdots, (\sum\limits_{\eta=j}^n a_\eta ) - (\sum\limits_{\eta=j+1}^n l_\eta ) \left. \right)_{j=2}^n \end{array}} \frac{(-1)^{n-1}} {(\sum\limits_{\eta=1}^n y_\eta)^{1+ \sum\limits_{\eta=1}^n a_\eta - \sum\limits_{\eta=2}^n l_\eta}} \cdot \prod\limits_{\xi=2}^n \frac{(1+ \sum\limits_{\eta=\xi}^n (a_\eta-l_\eta))^{(a_{\xi-1})}}{( \sum\limits_{\eta=\xi}^n y_\eta )^{1+l_\xi}} + \right.\\ % {\mathfrak T}^{(1)}_i(\vec{a}) &:=& (-1)^{n-2} a_{n-i-1}! % \sum\limits_{ \begin{array}{lll} \left( l_j \right. &=& 0, \cdots, (\sum\limits_{\eta=j}^n a_\eta ) - (\sum\limits_{\eta=j+1}^n l_\eta ) \left. \right)_{j=n-i+1}^n \\ \left( l_j \right. &=& 0, \cdots, (\sum\limits_{\eta=j}^{n-i-1} a_\eta ) - (\sum\limits_{\eta=j+1}^{n-i-1} l_\eta ) \left. \right)_{j=2}^{n-i-1} \end{array} } \frac{1}{(\sum\limits_{\xi=1}^{n-i-1}y_\xi)^{1+(\sum\limits_{\xi=1}^{n-i-1} a_\xi) - (\sum\limits_{\xi=2}^{n-i-1} l_\xi) }} \cdot % \frac{1}{(\sum\limits_{\xi=n-i}^{n}y_\xi)^{1+(\sum\limits_{\xi=n-i}^{n} a_\xi) - (\sum\limits_{\xi=n-i+1}^{n} l_\xi) }} \cdot \prod\limits_{\xi=2}^{n-i-1} \frac{(1+ \sum\limits_{\eta=\xi}^{n-i-1} (a_\eta-l_\eta))^{(a_{\xi-1})}}{(\sum\limits_{\eta=\xi}^{n-i-1} y_\eta)^{1+l_\xi}} \cdot \prod\limits_{\xi=n-i+1}^{n} \frac{(1+ \sum\limits_{\eta=\xi}^{n} (a_\eta-l_\eta))^{(a_{\xi-1})}}{(\sum\limits_{\eta=\xi}^{n} y_\eta)^{1+l_\xi}} + % \\ % &\vdots& \\ {\mathfrak T}^{(n-3)}_i(\vec{a}) &:=& \prod\limits_{\begin{array}{c} \xi=1 \\ \xi \neq (i,i+1) \end{array}}^n \frac{a_\xi!}{y_{\xi}^{1+a_\xi}} \cdot \left( \sum\limits_{l_{i+1}=0}^{a_{i+1}} \frac{-(1+a_{i+1}-l_{i+1})^{(a_i)}}{(y_i+y_{i+1})^{1+a_i+a_{i+1}-l_{i+1}}} \cdot \frac{a_{i+1}!}{y_{i+1}^{1+l_{i+1}}} \right) \\ % {\mathfrak T}^{(n-2)}(\vec{a}) &:=& \prod\limits_{\xi=1}^n \frac{a_\xi!}{y_\xi^{1+a_\xi}} \end{eqnarray}
Now the Mathematica code snippet below verifies the formula $(2)$ for $n=1,\cdots,5$. We have:
[![(*Our objective is to compute the following expression \partial^a\[1\] \
\partial^a\[2\] .... \partial^a\[n\] \
Product\[1/Sum\[y\[xi\],{xi,1,i}\],{i,1,n}\]. We will be using iterated \
partial fraction decomposition for this purpose.*)
uPch\[a_, n_\] := Pochhammer\[a, n\];
NN = 8; Clear\[a\]; Clear\[y\];
(*i\[Equal\]NN,NN-1,NN-2,NN-3,NN-4*)
Do\[a\[xi\] = RandomInteger\[{1, 5}\], {xi, 1, NN}\];
res = Table\[(-1)^Sum\[a\[xi\], {xi, NN - i, NN}\] D\[1/
Product\[Sum\[y\[eta\], {eta, 1, xi}\], {xi, 1, NN}\],
Evaluate\[
Sequence @@ Table\[{y\[xi\], a\[xi\]}, {xi, NN - i, NN}\]\]\], {i, 0,
4}\];
(*i=NN*)
res1 = 1/Product\[Sum\[y\[eta\], {eta, 1, xi}\], {xi, 1, NN - 1}\] a\[NN\]!/
Sum\[y\[eta\], {eta, 1, NN}\]^(a\[NN\] + 1);
(*i=NN-1*)
res2 = Sum[
uPch[a[NN] + 1 - l[NN],
a[NN - 1]]/(y[NN - 1] + Sum[y[xi], {xi, 1, NN - 2}] + y[NN])^(
a[NN - 1] + a[NN] + 1 - l[NN]) (-1)/y[NN]^(l[NN] + 1), {l[NN], 0,
a[NN]}] +
uPch[1, a[NN - 1]]/(y[NN - 1] + Sum[y[xi], {xi, 1, NN - 2}])^(
1 + a[NN - 1]) (+1)/y[NN]^(a[NN] + 1);
res2 = a[NN]!/Product[Sum[y[eta], {eta, 1, xi}], {xi, 1, NN - 2}];
(i=NN-2*)
res3 =
Sum[uPch[a[NN] + 1 - l[NN], a[NN - 1]] Sum[
uPch[a[NN - 1] + a[NN] + 1 - l[NN] - l[NN - 1],
a[NN - 2]]/(y[NN - 2] + Sum[y[xi], {xi, 1, NN - 3}] +
y[NN - 1] + y[NN])^(
a[NN - 2] + a[NN - 1] + a[NN] + 1 - l[NN] -
l[NN - 1]) (-1)/(y[NN - 1] + y[NN])^(
l[NN - 1] + 1), {l[NN - 1], 0,
a[NN - 1] + a[NN] + 0 - l[NN]}] (-1)/y[NN]^(l[NN] + 1), {l[NN],
0, a[NN]}] +
Sum[(uPch[a[NN] + 1 - l[NN], a[NN - 1]] uPch[1,
a[NN - 2]])/(y[NN - 2] + Sum[y[eta], {eta, 1, NN - 3}])^(
1 + a[NN - 2]) (+1)/(y[NN - 1] + y[NN])^(
a[NN - 1] + a[NN] + 1 - l[NN]) (-1)/y[NN]^(l[NN] + 1), {l[NN], 0,
a[NN]}] +
Sum[(uPch[1, a[NN - 1]] uPch[1 + a[NN - 1] - l[NN - 1],
a[NN - 2]])/(y[NN - 2] + Sum[y[xi], {xi, 1, NN - 3}] +
y[NN - 1])^(
1 + a[NN - 2] + a[NN - 1] - l[NN - 1]) (-1)/(y[NN - 1])^(
l[NN - 1] + 1), {l[NN - 1], 0, a[NN - 1]}] (+1)/y[NN]^(
a[NN] + 1) + (
uPch[1, a[NN - 1]] uPch[1, a[NN - 2]])/(y[NN - 2] +
Sum[y[eta], {eta, 1, NN - 3}])^(
1 + a[NN - 2]) (+1)/(y[NN - 1])^(a[NN - 1] + 1) (+1)/y[NN]^(
a[NN] + 1);
res3 = a[NN]!/Product[Sum[y[eta], {eta, 1, xi}], {xi, 1, NN - 3}];
(i=NN-3)
res4 =
(One Triple sum (0,1,2))
Sum[uPch[a[NN] + 1 - l[NN], a[NN - 1]] Sum[
uPch[a[NN - 1] + a[NN] + 1 - l[NN] - l[NN - 1], a[NN - 2]] Sum[
uPch[a[NN - 2] + a[NN - 1] + a[NN] + 1 - l[NN] - l[NN - 1] -
l[NN - 2],
a[NN - 3]]/(y[NN - 3] + Sum[y[xi], {xi, 1, NN - 4}] +
y[NN - 2] + y[NN - 1] + y[NN])^(
a[NN - 3] + a[NN - 2] + a[NN - 1] + a[NN] + 1 - l[NN] -
l[NN - 1] -
l[NN - 2]) (-1)/(y[NN - 2] + y[NN - 1] + y[NN])^(
l[NN - 2] + 1), {l[NN - 2], 0,
a[NN - 2] + a[NN - 1] + a[NN] + 0 - l[NN] -
l[NN - 1]}] (-1)/(y[NN - 1] + y[NN])^(
l[NN - 1] + 1), {l[NN - 1], 0,
a[NN - 1] + a[NN] + 0 - l[NN]}] (-1)/y[NN]^(l[NN] + 1), {l[NN],
0, a[NN]}] +
(Three Double sums: (0,1),(0,2),(1,2))
Sum[uPch[a[NN] + 1 - l[NN], a[NN - 1]] Sum[
uPch[a[NN - 1] + a[NN] + 1 - l[NN] - l[NN - 1], a[NN - 2]] uPch[
1, a[NN - 3]]/(y[NN - 3] + Sum[y[xi], {xi, 1, NN - 4}])^(
1 + a[NN - 3]) (+1)/(y[NN - 2] + y[NN - 1] + y[NN])^(
a[NN - 2] + a[NN - 1] + a[NN] + 1 - l[NN] -
l[NN - 1]) (-1)/(y[NN - 1] + y[NN])^(
l[NN - 1] + 1), {l[NN - 1], 0,
a[NN - 1] + a[NN] + 0 - l[NN]}] (-1)/y[NN]^(l[NN] + 1), {l[NN],
0, a[NN]}] +
Sum[uPch[a[NN] + 1 - l[NN], a[NN - 1]] uPch[1, a[NN - 2]] Sum[
uPch[a[NN - 2] + 1 - l[NN - 2],
a[NN - 3]]/(y[NN - 3] + Sum[y[xi], {xi, 1, NN - 4}] +
y[NN - 2])^(
a[NN - 3] + a[NN - 2] + 1 - l[NN - 2]) (-1)/(y[NN - 2])^(
l[NN - 2] + 1), {l[NN - 2], 0, a[NN - 2]}] (+1)/(y[NN - 1] +
y[NN])^(a[NN - 1] + a[NN] + 1 - l[NN]) (-1)/y[NN]^(
l[NN] + 1), {l[NN], 0, a[NN]}] +
Sum[uPch[1, a[NN - 1]] uPch[1 + a[NN - 1] - l[NN - 1],
a[NN - 2]] Sum[
uPch[1 + a[NN - 2] + a[NN - 1] - l[NN - 1] - l[NN - 2],
a[NN - 3]]/(y[NN - 3] + Sum[y[xi], {xi, 1, NN - 4}] +
y[NN - 2] + y[NN - 1])^(
1 + a[NN - 3] + a[NN - 2] + a[NN - 1] - l[NN - 1] -
l[NN - 2]) (-1)/(y[NN - 2] + y[NN - 1])^(
l[NN - 2] + 1), {l[NN - 2], 0,
0 + a[NN - 2] + a[NN - 1] - l[NN - 1]}] (-1)/(y[NN - 1])^(
l[NN - 1] + 1), {l[NN - 1], 0, a[NN - 1]}] (+1)/y[NN]^(
a[NN] + 1) +
(Three Single sums: (0),(1),(2))
Sum[uPch[a[NN] + 1 - l[NN], a[NN - 1]] uPch[1, a[NN - 2]] uPch[1,
a[NN - 3]]/(y[NN - 3] + Sum[y[xi], {xi, 1, NN - 4}])^(
1 + a[NN - 3]) (+1)/(y[NN - 2])^(
a[NN - 2] + 1) (+1)/(y[NN - 1] + y[NN])^(
a[NN - 1] + a[NN] + 1 - l[NN]) (-1)/y[NN]^(l[NN] + 1), {l[NN], 0,
a[NN]}] +
Sum[uPch[1, a[NN - 1]] uPch[1 + a[NN - 1] - l[NN - 1],
a[NN - 2]] uPch[1,
a[NN - 3]]/(y[NN - 3] + Sum[y[xi], {xi, 1, NN - 4}])^(
1 + a[NN - 3]) (+1)/(y[NN - 2] + y[NN - 1])^(
1 + a[NN - 2] + a[NN - 1] - l[NN - 1]) (-1)/(y[NN - 1])^(
l[NN - 1] + 1), {l[NN - 1], 0, a[NN - 1]}] (+1)/y[NN]^(
a[NN] + 1) +
uPch[1, a[NN - 1]] uPch[1, a[NN - 2]] Sum[
uPch[1 + a[NN - 2] - l[NN - 2],
a[NN - 3]]/(y[NN - 3] + Sum[y[xi], {xi, 1, NN - 4}] +
y[NN - 2])^(
1 + a[NN - 3] + a[NN - 2] - l[NN - 2]) (-1)/(y[NN - 2])^(
l[NN - 2] + 1), {l[NN - 2], 0, 0 + a[NN - 2]}] (+1)/(y[
NN - 1])^(a[NN - 1] + 1) (+1)/y[NN]^(a[NN] + 1) +
(One Free term*)
(uPch[1, a[NN - 1]] uPch[1, a[NN - 2]] uPch[1,
a[NN - 3]])/(y[NN - 3] + Sum[y[xi], {xi, 1, NN - 4}])^(
1 + a[NN - 3]) (+1)/(y[NN - 2])^(1 + a[NN - 2]) (+1)/(y[NN - 1])^(
a[NN - 1] + 1) (+1)/y[NN]^(a[NN] + 1);
res4 *= a[NN]!/Product[Sum[y[eta], {eta, 1, xi}], {xi, 1, NN - 4}];
(i=NN-4)
S5 = Sum[y[xi], {xi, 1, NN - 5}];
res5 =
(One Quadruple sum (0,1,2,3))
Sum[uPch[a[NN] + 1 - l[NN], a[NN - 1]] Sum[
uPch[a[NN - 1] + a[NN] + 1 - l[NN] - l[NN - 1], a[NN - 2]] Sum[
uPch[a[NN - 2] + a[NN - 1] + a[NN] + 1 - l[NN] - l[NN - 1] -
l[NN - 2], a[NN - 3]] Sum[
uPch\[1 + a\[-3 + NN\] + a\[-2 + NN\] + a\[-1 + NN\] + a\[NN\] -
l\[-3 + NN\] - l\[-2 + NN\] - l\[-1 + NN\] - l\[NN\],
a\[-4 + NN\]\] (S5 + y\[-4 + NN\] + y\[-3 + NN\] + y\[-2 + NN\] +
y\[-1 + NN\] + y\[NN\])^(-1 - a\[-4 + NN\] - a\[-3 + NN\] -
a\[-2 + NN\] - a\[-1 + NN\] - a\[NN\] + l\[-3 + NN\] +
l\[-2 + NN\] + l\[-1 + NN\] +
l\[NN\]) (-1)/((y\[-3 + NN\] + y\[-2 + NN\] + y\[-1 + NN\] +
y\[NN\])^(1 + l\[-3 + NN\])) , {l\[-3 + NN\], 0,
a\[-3 + NN\] + a\[-2 + NN\] + a\[-1 + NN\] + a\[NN\] - l\[-2 + NN\] -
l\[-1 + NN\] - l\[NN\]}\] (-1)/(y\[NN - 2\] + y\[NN - 1\] +
y\[NN\])^(l\[NN - 2\] + 1), {l\[NN - 2\], 0,
a\[NN - 2\] + a\[NN - 1\] + a\[NN\] + 0 - l\[NN\] -
l\[NN - 1\]}\] (-1)/(y\[NN - 1\] + y\[NN\])^(
l\[NN - 1\] + 1), {l\[NN - 1\], 0,
a\[NN - 1\] + a\[NN\] + 0 - l\[NN\]}\] (-1)/y\[NN\]^(l\[NN\] + 1), {l\[NN\],
0, a\[NN\]}\] +
(Four triple sums: (0,1,2),(0,1,3),(0,2,3),(1,2,3))
Sum[uPch[a[NN] + 1 - l[NN], a[NN - 1]] Sum[
uPch[a[NN - 1] + a[NN] + 1 - l[NN] - l[NN - 1], a[NN - 2]] Sum[
uPch[a[NN - 2] + a[NN - 1] + a[NN] + 1 - l[NN] - l[NN - 1] -
l[NN - 2], a[NN - 3]] uPch[1,
a[-4 + NN]] (S5 + y[-4 + NN])^(-1 -
a[-4 + NN]) (y[-3 + NN] + y[-2 + NN] + y[-1 + NN] +
y[NN])^(-1 - a[-3 + NN] - a[-2 + NN] - a[-1 + NN] - a[NN] +
l[-2 + NN] + l[-1 + NN] +
l[NN]) (-1)/(y[NN - 2] + y[NN - 1] + y[NN])^(
l[NN - 2] + 1), {l[NN - 2], 0,
a[NN - 2] + a[NN - 1] + a[NN] + 0 - l[NN] -
l[NN - 1]}] (-1)/(y[NN - 1] + y[NN])^(
l[NN - 1] + 1), {l[NN - 1], 0,
a[NN - 1] + a[NN] + 0 - l[NN]}] (-1)/y[NN]^(l[NN] + 1), {l[NN],
0, a[NN]}] +
Sum[uPch[a[NN] + 1 - l[NN], a[NN - 1]] Sum[
uPch[a[NN - 1] + a[NN] + 1 - l[NN] - l[NN - 1], a[NN - 2]] uPch[
1, a[NN -
3]] Sum[-uPch[1 + a[-3 + NN] - l[-3 + NN],
a[-4 + NN]] y[-3 + NN]^(-1 -
l[-3 + NN]) (S5 + y[-4 + NN] + y[-3 + NN])^(-1 -
a[-4 + NN] - a[-3 + NN] + l[-3 + NN]), {l[-3 + NN], 0,
a[-3 + NN]}] (+1)/(y[NN - 2] + y[NN - 1] + y[NN])^(
a[NN - 2] + a[NN - 1] + a[NN] + 1 - l[NN] -
l[NN - 1]) (-1)/(y[NN - 1] + y[NN])^(
l[NN - 1] + 1), {l[NN - 1], 0,
a[NN - 1] + a[NN] + 0 - l[NN]}] (-1)/y[NN]^(l[NN] + 1), {l[NN],
0, a[NN]}] +
Sum[uPch[a[NN] + 1 - l[NN], a[NN - 1]] uPch[1, a[NN - 2]] Sum[
uPch[a[NN - 2] + 1 - l[NN - 2],
a[NN - 3]] (Sum[-uPch[
1 + a[-3 + NN] + a[-2 + NN] - l[-3 + NN] - l[-2 + NN],
a[-4 + NN]] (y[-3 + NN] + y[-2 + NN])^(-1 -
l[-3 + NN]) (S5 + y[-4 + NN] + y[-3 + NN] +
y[-2 + NN])^(-1 - a[-4 + NN] - a[-3 + NN] - a[-2 + NN] +
l[-3 + NN] + l[-2 + NN]), {l[-3 + NN], 0,
a[-3 + NN] + a[-2 + NN] - l[-2 + NN]}]) (-1)/(y[NN - 2])^(
l[NN - 2] + 1), {l[NN - 2], 0, a[NN - 2]}] (+1)/(y[NN - 1] +
y[NN])^(a[NN - 1] + a[NN] + 1 - l[NN]) (-1)/y[NN]^(
l[NN] + 1), {l[NN], 0, a[NN]}] +
Sum[uPch[1, a[NN - 1]] uPch[1 + a[NN - 1] - l[NN - 1],
a[NN - 2]] Sum[
uPch[1 + a[NN - 2] + a[NN - 1] - l[NN - 1] - l[NN - 2],
a[NN - 3]] (Sum[-uPch[
1 + a[-3 + NN] + a[-2 + NN] + a[-1 + NN] - l[-3 + NN] -
l[-2 + NN] - l[-1 + NN], a[-4 + NN]] (y[-3 + NN] +
y[-2 + NN] + y[-1 + NN])^(-1 -
l[-3 + NN]) (S5 + y[-4 + NN] + y[-3 + NN] + y[-2 + NN] +
y[-1 + NN])^(-1 - a[-4 + NN] - a[-3 + NN] - a[-2 + NN] -
a[-1 + NN] + l[-3 + NN] + l[-2 + NN] +
l[-1 + NN]), {l[-3 + NN], 0,
a[-3 + NN] + a[-2 + NN] + a[-1 + NN] - l[-2 + NN] -
l[-1 + NN]}]) (-1)/(y[NN - 2] + y[NN - 1])^(
l[NN - 2] + 1), {l[NN - 2], 0,
0 + a[NN - 2] + a[NN - 1] - l[NN - 1]}] (-1)/(y[NN - 1])^(
l[NN - 1] + 1), {l[NN - 1], 0, a[NN - 1]}] (+1)/y[NN]^(
a[NN] + 1) +
(Six double sums: (0,1),(0,2),(0,3),(1,2),(1,3),(2,3))
Sum[uPch[a[NN] + 1 - l[NN], a[NN - 1]] Sum[
uPch[a[NN - 1] + a[NN] + 1 - l[NN] - l[NN - 1], a[NN - 2]] uPch[
1, a[NN - 3]] uPch[1, a[-4 + NN]] (S5 + y[-4 + NN])^(-1 -
a[-4 + NN])
y[-3 + NN]^(-1 -
a[-3 + NN]) (+1)/(y[NN - 2] + y[NN - 1] + y[NN])^(
a[NN - 2] + a[NN - 1] + a[NN] + 1 - l[NN] -
l[NN - 1]) (-1)/(y[NN - 1] + y[NN])^(
l[NN - 1] + 1), {l[NN - 1], 0,
a[NN - 1] + a[NN] + 0 - l[NN]}] (-1)/y[NN]^(l[NN] + 1), {l[NN],
0, a[NN]}] +
Sum[uPch[a[NN] + 1 - l[NN], a[NN - 1]] uPch[1, a[NN - 2]] Sum[
uPch[a[NN - 2] + 1 - l[NN - 2],
a[NN - 3]] (uPch[1, a[-4 + NN]] (S5 + y[-4 + NN])^(-1 -
a[-4 + NN]) (y[-3 + NN] + y[-2 + NN])^(-1 - a[-3 + NN] -
a[-2 + NN] + l[-2 + NN])) (-1)/(y[NN - 2])^(
l[NN - 2] + 1), {l[NN - 2], 0, a[NN - 2]}] (+1)/(y[NN - 1] +
y[NN])^(a[NN - 1] + a[NN] + 1 - l[NN]) (-1)/y[NN]^(
l[NN] + 1), {l[NN], 0, a[NN]}] +
Sum[uPch[a[NN] + 1 - l[NN], a[NN - 1]] uPch[1, a[NN - 2]] uPch[1,
a[NN - 3]] (Sum[-uPch[1 + a[-3 + NN] - l[-3 + NN],
a[-4 + NN]] y[-3 + NN]^(-1 -
l[-3 + NN]) (S5 + y[-4 + NN] + y[-3 + NN])^(-1 - a[-4 + NN] -
a[-3 + NN] + l[-3 + NN]), {l[-3 + NN], 0,
a[-3 + NN]}]) (+1)/(y[NN - 2])^(
a[NN - 2] + 1) (+1)/(y[NN - 1] + y[NN])^(
a[NN - 1] + a[NN] + 1 - l[NN]) (-1)/y[NN]^(l[NN] + 1), {l[NN], 0,
a[NN]}] +
Sum[uPch[1, a[NN - 1]] uPch[1 + a[NN - 1] - l[NN - 1],
a[NN - 2]] Sum[
uPch[1 + a[NN - 2] + a[NN - 1] - l[NN - 1] - l[NN - 2],
a[NN - 3]] (uPch[1, a[-4 + NN]] (S5 + y[-4 + NN])^(-1 -
a[-4 + NN]) (y[-3 + NN] + y[-2 + NN] + y[-1 + NN])^(-1 -
a[-3 + NN] - a[-2 + NN] - a[-1 + NN] + l[-2 + NN] +
l[-1 + NN])) (-1)/(y[NN - 2] + y[NN - 1])^(
l[NN - 2] + 1), {l[NN - 2], 0,
0 + a[NN - 2] + a[NN - 1] - l[NN - 1]}] (-1)/(y[NN - 1])^(
l[NN - 1] + 1), {l[NN - 1], 0, a[NN - 1]}] (+1)/y[NN]^(
a[NN] + 1) +
Sum[uPch[1, a[NN - 1]] uPch[1 + a[NN - 1] - l[NN - 1],
a[NN - 2]] uPch[1,
a[NN - 3]] (Sum[-uPch[1 + a[-3 + NN] - l[-3 + NN],
a[-4 + NN]] y[-3 + NN]^(-1 -
l[-3 + NN]) (S5 + y[-4 + NN] + y[-3 + NN])^(-1 -
a[-4 + NN] - a[-3 + NN] + l[-3 + NN]), {l[-3 + NN], 0,
a[-3 + NN]}]) (+1)/(y[NN - 2] + y[NN - 1])^(
1 + a[NN - 2] + a[NN - 1] - l[NN - 1]) (-1)/(y[NN - 1])^(
l[NN - 1] + 1), {l[NN - 1], 0, a[NN - 1]}] (+1)/y[NN]^(
a[NN] + 1) +
Sum[(Sum[(-uPch[
1 + a[-3 + NN] + a[-2 + NN] - l[-3 + NN] - l[-2 + NN],
a[-4 + NN]])/(S5 + y[-4 + NN] + y[-3 + NN] + y[-2 + NN])^(
1 + a[-4 + NN] + a[-3 + NN] + a[-2 + NN] - l[-3 + NN] -
l[-2 + NN])
uPch[1 + a[NN - 2] - l[NN - 2],
a[NN - 3]]/(y[-3 + NN] + y[-2 + NN])^(
1 + l[-3 + NN]), {l[-3 + NN], 0,
a[-3 + NN] + a[-2 + NN] - l[-2 + NN]}]) (-a[NN - 2]!)/(y[
NN - 2])^(l[NN - 2] + 1), {l[NN - 2], 0,
0 + a[NN - 2]}] (+a[NN - 1]!)/(y[NN - 1])^(a[NN - 1] + 1) (+1)/
y[NN]^(a[NN] + 1) +
(Four single sums (0),(1),(2),(3))
a[NN - 4]!/(S5 + y[-4 + NN])^(1 + a[-4 + NN]) a[NN - 3]!/
y[-3 + NN]^(1 + a[-3 + NN]) (+a[NN - 2]!)/(y[NN - 2])^(
a[NN - 2] + 1)
Sum[(-uPch[a[NN] + 1 - l[NN], a[NN - 1]])/(y[NN - 1] + y[NN])^(
a[NN - 1] + a[NN] + 1 - l[NN]) (+1)/y[NN]^(l[NN] + 1), {l[NN],
0, a[NN]}] +
a[NN - 4]!/(S5 + y[-4 + NN])^(1 + a[-4 + NN]) a[NN - 3]!/
y[-3 + NN]^(1 + a[-3 + NN])
Sum[(-uPch[1 + a[NN - 1] - l[NN - 1], a[NN - 2]])/(y[NN - 2] +
y[NN - 1])^(
1 + a[NN - 2] + a[NN - 1] -
l[NN - 1]) (+a[NN - 1]!)/(y[NN - 1])^(
l[NN - 1] + 1), {l[NN - 1], 0, a[NN - 1]}] (+1)/y[NN]^(
a[NN] + 1) +
a[NN - 4]!/(S5 + y[-4 + NN])^(1 + a[-4 + NN])
Sum[(-uPch[1 + a[NN - 2] - l[NN - 2], a[NN - 3]])/(y[-3 + NN] +
y[-2 + NN])^(
1 + a[-3 + NN] + a[-2 + NN] -
l[-2 + NN]) (a[NN - 2]!)/(y[NN - 2])^(
l[NN - 2] + 1), {l[NN - 2], 0, 0 + a[NN - 2]}] (+a[NN - 1]!)/(y[
NN - 1])^(a[NN - 1] + 1) (+1)/y[NN]^(a[NN] + 1) +
Sum[ (-uPch[1 + a[-3 + NN] - l[-3 + NN], a[-4 + NN]])/(S5 +
y[-4 + NN] + y[-3 + NN])^(
1 + a[-4 + NN] + a[-3 + NN] - l[-3 + NN]) (+a[NN - 3]!)/ (
y[-3 + NN]^(1 + l[-3 + NN])), {l[-3 + NN], 0,
a[-3 + NN]}] (+a[NN - 2]!)/(y[NN - 2])^(
1 + a[NN - 2]) (+a[NN - 1]!)/(y[NN - 1])^(a[NN - 1] + 1) (+1)/
y[NN]^(a[NN] + 1) +
(One Free term)
uPch[1, a[NN - 1]] uPch[1, a[NN - 2]] uPch[1,
a[NN - 3]] (uPch[1, a[-4 + NN]] (S5 + y[-4 + NN])^(-1 -
a[-4 + NN]) y[-3 + NN]^(-1 - a[-3 + NN])) (+1)/(y[NN - 2])^(
1 + a[NN - 2]) (+1)/(y[NN - 1])^(a[NN - 1] + 1) (+1)/y[NN]^(
a[NN] + 1);
res5 *= a[NN]!/Product[Sum[y[eta], {eta, 1, xi}], {xi, 1, NN - 5}];
(res[[1]] - res1) /. y[j_] -> RandomInteger[{1, 5}]
(res[[2]] - res2) /. y[j_] -> RandomInteger[{1, 5}]
(res[[3]] - res3) /. y[j_] -> RandomInteger[{1, 5}]
(res[[4]] - res4) /. y[j_] -> RandomInteger[{1, 5}]
(res[[5]] - res5) /. y[j_] -> RandomInteger[{1, 5}]
As you can see some terms are missing in formula $(2)$. Can we find those terms in closed form?