This question generalizes my other question here.
Let $\vec{a}:= \left( a_j\right)_{j=1}^N \in {\mathbb N}^N$ and let $\vec{A} := \left(A_j\right)_{j=1}^N$ . We define a following multidimensional integral:
\begin{equation} {\mathfrak J}_N^{\vec{a}} \left( \vec{A} \right):= \int\limits_{\infty > \lambda_1 \ge \lambda_2 \ge \cdot \ge \lambda_N \ge 0} \prod\limits_{\xi=1}^N \lambda_\xi^{a_\xi} \cdot \prod\limits_{1 \le i < j \le N} (\lambda_i - \lambda_j) \cdot e^{-\vec{A} \cdot \vec{\lambda}} d^N\lambda \quad (1) \end{equation}
The quantity in $(1)$ is important in the Random Matrix Theory, in particular in computing spectral moments of the sample correlation matrix.
By using the technique from the the other post linked above we know that ${\mathfrak J}_N^{\vec{a}} \left( \vec{A} \right) = \prod\limits_{i=1}^N ( \partial_{{\bar A}_i} + \cdot \partial_{{\bar A}_N} )^{a_i} \cdot \prod\limits_{1 \le i < j \le N} ( \partial_{{\bar A}_i} + \cdots + \partial_{{\bar A}_{j-1}} ) \cdot \prod\limits_{j=1}^N 1/{\bar A}_j $ where ${\bar A}_j:= A_1+\cdots+A_j$ for $j=1,\cdots,N$. This fact allows us to find the functional form of the solution which reads as follows. We have:
\begin{equation} {\mathfrak J}_N^{\vec{a}} \left( \vec{A} \right) = \sum\limits_{\begin{array}{l} \lambda_1+\cdots \lambda_N = \left|\vec{a}\right| + \binom{N+1}{2} \\ \lambda_1 \ge 0, \cdots, \lambda_N \ge 0 \end{array}} {\mathfrak C}^{(N)}_{\lambda_1,\cdots,\lambda_N}(\vec{a}) \cdot \prod\limits_{j=1}^N \frac{1}{{\bar A}_j^{\lambda_j}} \quad (2) \end{equation}
And now , all what we need to do in order to compute our quantity is to find recurrence relations for our coefficients ${\mathfrak C}^{(N)}_{\vec{\lambda}}(\vec{a})$.
We will give those recurrences for particular values of $N=2,3,4$ and then we will verify the equations by using a Mathematica code snippet. Here we go:
\begin{eqnarray} && \left. {\mathfrak C}^{(2)}_{\lambda_1,\lambda_2}(\vec{a}) = \binom{a_1}{\lambda_1 - 2} \cdot (\lambda_1-1)! \cdot (a_1+a_2+2-\lambda_1)! \cdot 1_{a_1+2 \ge \lambda_1 \ge 2} \cdot 1_{\lambda_1+\lambda_2 = \left|\vec{a}\right|+3} \right. \\ %%%%%%%%%%%%%%%%%%%%%% && \left. {\mathfrak C}^{(3)}_{\lambda_1,\lambda_2}(\vec{a}) = \sum\limits_{\begin{array}{l} l_1+l_2+l_3= \lambda_3-1 \\ l_1=0,\cdots,a_1 \\l_2=0,\cdots,a_2 \\ l_3 = a_3 \end{array}} \binom{a_1}{l_1} \binom{a_2}{l_2} (\lambda_3-1)! \right. \\ && \left[ \right. \\ && \left. (\lambda_1-1)_{(1)} (\lambda_2-1)_{(1)} {\mathfrak C}^{(2)}_{\lambda_1-1,\lambda_2-1}(a_1-l_1,a_2-l_2) + \right. \\ && \left. (\lambda_1-1)_{(0)} (\lambda_2-1)_{(2)} {\mathfrak C}^{(2)}_{\lambda_1-0,\lambda_2-2}(a_1-l_1,a_2-l_2) \right. \\ && \left. \right] \cdot 1_{\lambda_1+\lambda_2+\lambda_3 = \left|\vec{a}\right| +6} \cdot 1_{\lambda_1 \ge 2} \cdot 1_{\lambda_3 \ge 1} \\ %%%%%%%%%%%%%%%%%%%%%% && \left. {\mathfrak C}^{(4)}_{\lambda_1,\lambda_2,\lambda_3}(\vec{a}) = \sum\limits_{\begin{array}{l} l_1+l_2+l_3+l_4= \lambda_4-1 \\ l_1=0,\cdots,a_1 \\l_2=0,\cdots,a_2 \\ l_3=0,\cdots, a_3 \\ l_4 = a_4 \end{array}} \binom{a_1}{l_1} \binom{a_2}{l_2} \binom{a_3}{l_3} (\lambda_4-1)! \right. \\ && \left[ \right. \\ && \left. 1 \cdot (\lambda_1-1)_{(1)} (\lambda_2-1)_{(1)} (\lambda_3-1)_{(1)} {\mathfrak C}^{(3)}_{\lambda_1-1,\lambda_2-1,\lambda_3-1}(a_1-l_1,a_2-l_2,a_3-l_3) + \right. \\ && \left. 1 \cdot (\lambda_1-1)_{(0)} (\lambda_2-1)_{(2)} (\lambda_3-1)_{(1)} {\mathfrak C}^{(3)}_{\lambda_1-0,\lambda_2-2,\lambda_3-1}(a_1-l_1,a_2-l_2,a_3-l_3) + \right. \\ && \left. 1 \cdot (\lambda_1-1)_{(1)} (\lambda_2-1)_{(0)} (\lambda_3-1)_{(2)} {\mathfrak C}^{(3)}_{\lambda_1-1,\lambda_2-0,\lambda_3-2}(a_1-l_1,a_2-l_2,a_3-l_3) + \right. \\ && \left. 2 \cdot (\lambda_1-1)_{(0)} (\lambda_2-1)_{(1)} (\lambda_3-1)_{(2)} {\mathfrak C}^{(3)}_{\lambda_1-0,\lambda_2-1,\lambda_3-2}(a_1-l_1,a_2-l_2,a_3-l_3) + \right. \\ && \left. 1 \cdot (\lambda_1-1)_{(0)} (\lambda_2-1)_{(0)} (\lambda_3-1)_{(3)} {\mathfrak C}^{(3)}_{\lambda_1-0,\lambda_2-0,\lambda_3-3}(a_1-l_1,a_2-l_2,a_3-l_3) + \right. \\ && \left. \right] \cdot 1_{\lambda_1+\lambda_2+\lambda_3 +\lambda_4= \left|\vec{a}\right| +10} \cdot 1_{\lambda_1 \ge 2} \cdot 1_{\lambda_4 \ge 1} \\ \end{eqnarray}
where $a_{(n)}:= a(a-1) \cdots (a-n+1)$ is the lower Pochhammer symbol.
Now comes the verification.
CC[2, lmb_List, a_List] :=
If[a[[1]] >= lmb[[1]] - 2 && lmb[[1]] >= 2,
Binomial[a[[1]],
lmb[[1]] - 2] (lmb[[1]] - 1)! (a[[1]] + a[[2]] + 2 - lmb[[1]])!,
0] ;
l2 =.;
CC[3, lmb_List, a_List] := Sum[With[{l2 = lmb[[3]] - 1 - a[[3]] - l1},
Binomial[a[[1]], l1] Binomial[a[[2]], l2] (lmb[[3]] - 1)!
(
(lmb[[1]] - 1) ( lmb[[2]] - 1) CC[
2, {lmb[[1]] - 1, lmb[[2]] - 1}, {a[[1]] - l1,
a[[2]] - l2}] + (lmb[[2]] - 1) (lmb[[2]] - 2) CC[
2, {lmb[[1]] - 0, lmb[[2]] - 2}, {a[[1]] - l1, a[[2]] - l2}]
)]
, {l1, Max[0, lmb[[3]] - 1 - a[[2]] - a[[3]]],
Min[a[[1]], lmb[[3]] - 1 - a[[3]]]}];
l3 =.; Clear[lPochh];
lPochh[a_, n_] := Pochhammer[a - n + 1, n];
CC[4, lmb_List, a_List] :=
Sum[With[{l3 = lmb[[4]] - 1 - a[[4]] - l1 - l2},
Binomial[a[[1]], l1] Binomial[a[[2]], l2] Binomial[a[[3]],
l3] (lmb[[4]] - 1)!
(
1 lPochh[lmb[[1]] - 1, 1] lPochh[lmb[[2]] - 1, 1] lPochh[
lmb[[3]] - 1, 1] CC[3, Drop[lmb, -1] - {1, 1, 1},
Drop[a, -1] - {l1, l2, l3}] +
1 lPochh[lmb[[1]] - 1, 0] lPochh[lmb[[2]] - 1, 2] lPochh[
lmb[[3]] - 1, 1] CC[3, Drop[lmb, -1] - {0, 2, 1},
Drop[a, -1] - {l1, l2, l3}] +
1 lPochh[lmb[[1]] - 1, 1] lPochh[lmb[[2]] - 1, 0] lPochh[
lmb[[3]] - 1, 2] CC[3, Drop[lmb, -1] - {1, 0, 2},
Drop[a, -1] - {l1, l2, l3}] +
2 lPochh[lmb[[1]] - 1, 0] lPochh[lmb[[2]] - 1, 1] lPochh[
lmb[[3]] - 1, 2] CC[3, Drop[lmb, -1] - {0, 1, 2},
Drop[a, -1] - {l1, l2, l3}] +
1 lPochh[lmb[[1]] - 1, 0] lPochh[lmb[[2]] - 1, 0] lPochh[
lmb[[3]] - 1, 3] CC[3, Drop[lmb, -1] - {0, 0, 3},
Drop[a, -1] - {l1, l2, l3}]
)]
, {l1, 0, a[[1]]}, {l2,
Max[0, lmb[[4]] - 1 - a[[3]] - a[[4]] - l1],
Min[a[[2]], lmb[[4]] - 1 - a[[4]] - l1]}];
(*******)
NN = 2;
a = RandomInteger[{1, 5}, NN];
A = RandomInteger[{1, 5}, NN];
Ab = Accumulate[A];
NIntegrate[
Product[l[xi]^a[[xi]], {xi, 1, NN}] (l[1] -
l[2]) Exp[-Sum[A[[xi]] l[xi], {xi, 1, NN}]],
Evaluate[Sequence @@
Table[{l[xi], 0, If[xi == 1, Infinity, l[xi - 1]]}, {xi, 1, NN}]]]
Clear[lmb];
Table[CC[NN, {lmb[1], lmb[2]}, a] Product[ 1/Ab[[xi]]^
lmb[xi], {xi, 1, NN}] /.
lmb[NN] :> Total[a] + 3 - lmb[1], {lmb[1], 2, a[[1]] + 3}] //
Total // N
(***********)
NN = 3;
a = RandomInteger[{1, 5}, NN];
A = RandomInteger[{1, 5}, NN];
Ab = Accumulate[A];
NIntegrate[
Product[l[xi]^a[[xi]], {xi, 1, NN}] Product[
l[i] - l[j], {i, 1, NN}, {j, i + 1,
NN}] Exp[-Sum[A[[xi]] l[xi], {xi, 1, NN}]],
Evaluate[Sequence @@
Table[{l[xi], 0, If[xi == 1, Infinity, l[xi - 1]]}, {xi, 1, NN}]]]
Clear[lmb];
Table[CC[NN, {lmb[1], lmb[2] - lmb[1], Total[a] + 6 - lmb[2]},
a] Product[ 1/Ab[[xi]]^(
lmb[xi] - lmb[xi - 1]), {xi, 1, NN}] /. {lmb[0] :> 0,
lmb[NN] -> Total[a] + 6}, {lmb[1], 2, Total[a] + 5}, {lmb[2],
lmb[1], Total[a] + 5}] // Flatten // Total // N
(*******)
NN = 4;
a = RandomInteger[{1, 5}, NN];
A = RandomInteger[{1, 5}, NN];
Ab = Accumulate[A];
NIntegrate[
Product[l[xi]^a[[xi]], {xi, 1, NN}] Product[
l[i] - l[j], {i, 1, NN}, {j, i + 1,
NN}] Exp[-Sum[A[[xi]] l[xi], {xi, 1, NN}]],
Evaluate[Sequence @@
Table[{l[xi], 0, If[xi == 1, Infinity, l[xi - 1]]}, {xi, 1, NN}]]]
Clear[lmb];
Flatten[Table[
CC[NN, {lmb[1], lmb[2] - lmb[1], lmb[3] - lmb[2],
Total[a] + 10 - lmb[3]}, a] Product[ 1/Ab[[xi]]^(
lmb[xi] - lmb[xi - 1]), {xi, 1, NN}] /. {lmb[0] :> 0,
lmb[NN] -> Total[a] + 10}, {lmb[1], 2, Total[a] + 9}, {lmb[2],
lmb[1], Total[a] + 9}, {lmb[3], lmb[2], Total[a] + 9}]] //
Total // N
Now, after having said all this my questions would be the following. Firstly, can we write down a recurrence relation for the coefficients for an arbitrary values of $N \ge 2$. Secondly, how does the computational expense, needed for computing the coefficients in question, increase with $N$.